Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (9006) Expression Attributions Wiki
XB-ANAT-3335

Papers associated with cell part (and cftr)

Limit to papers also referencing gene:
Show all cell part papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

A single-cell, time-resolved profiling of Xenopus mucociliary epithelium reveals nonhierarchical model of development., Lee J., Sci Adv. April 7, 2023; 9 (14): eadd5745.                                                          


UXT chaperone prevents proteotoxicity by acting as an autophagy adaptor for p62-dependent aggrephagy., Yoon MJ., Nat Commun. March 29, 2021; 12 (1): 1955.                


CFTR channel in oocytes from Xenopus laevis and its regulation by xShroom1 protein., Palma AG., Pflugers Arch. May 1, 2016; 468 (5): 871-80.


Serum and glucocorticoid-inducible kinase1 increases plasma membrane wt-CFTR in human airway epithelial cells by inhibiting its endocytic retrieval., Bomberger JM., PLoS One. February 19, 2014; 9 (2): e89599.                  


Influenza matrix protein 2 alters CFTR expression and function through its ion channel activity., Londino JD., Am J Physiol Lung Cell Mol Physiol. May 1, 2013; 304 (9): L582-92.


Nedd4-2 does not regulate wt-CFTR in human airway epithelial cells., Koeppen K., Am J Physiol Lung Cell Mol Physiol. October 15, 2012; 303 (8): L720-7.


Functional interaction between CFTR and the sodium-phosphate co-transport type 2a in Xenopus laevis oocytes., Bakouh N., PLoS One. January 1, 2012; 7 (4): e34879.                


F508del-CFTR increases intracellular Ca(2+) signaling that causes enhanced calcium-dependent Cl(-) conductance in cystic fibrosis., Martins JR., Biochim Biophys Acta. November 1, 2011; 1812 (11): 1385-92.


CFTR induces extracellular acid sensing in Xenopus oocytes which activates endogenous Ca²⁺-activated Cl⁻ conductance., Kongsuphol P., Pflugers Arch. September 1, 2011; 462 (3): 479-87.


ERp29 regulates DeltaF508 and wild-type cystic fibrosis transmembrane conductance regulator (CFTR) trafficking to the plasma membrane in cystic fibrosis (CF) and non-CF epithelial cells., Suaud L., J Biol Chem. June 17, 2011; 286 (24): 21239-53.


Characterization of the L683P mutation of SLC26A9 in Xenopus oocytes., Avella M., Biochim Biophys Acta. June 1, 2011; 1810 (6): 577-83.


The location of olfactory receptors within olfactory epithelium is independent of odorant volatility and solubility., Abaffy T., BMC Res Notes. May 6, 2011; 4 137.        


Effect of Annexin A5 on CFTR: regulated traffic or scaffolding?, Faria D., Mol Membr Biol. January 1, 2011; 28 (1): 14-29.


Stimulating effect of external Myo-inositol on the expression of mutant forms of aquaporin 2., Lussier Y., J Membr Biol. July 1, 2010; 236 (2): 225-32.


Regulation of CFTR trafficking by its R domain., Lewarchik CM., J Biol Chem. October 17, 2008; 283 (42): 28401-12.


Imaging CFTR in its native environment., Schillers H., Pflugers Arch. April 1, 2008; 456 (1): 163-77.


The role of SGK and CFTR in acute adaptation to seawater in Fundulus heteroclitus., Shaw JR., Cell Physiol Biochem. January 1, 2008; 22 (1-4): 69-78.


Regulation of human cystic fibrosis transmembrane conductance regulator (CFTR) by serum- and glucocorticoid-inducible kinase (SGK1)., Sato JD., Cell Physiol Biochem. January 1, 2007; 20 (1-4): 91-8.


The CLIC1 chloride channel is regulated by the cystic fibrosis transmembrane conductance regulator when expressed in Xenopus oocytes., Edwards JC., J Membr Biol. January 1, 2006; 213 (1): 39-46.


An energy-dependent maturation step is required for release of the cystic fibrosis transmembrane conductance regulator from early endoplasmic reticulum biosynthetic machinery., Oberdorf J., J Biol Chem. November 18, 2005; 280 (46): 38193-202.


Synergic action of insulin and genistein on Na+/K+/2Cl- cotransporter in renal epithelium., Ueda-Nishimura T., Biochem Biophys Res Commun. July 15, 2005; 332 (4): 1042-52.


Potentiation of effect of PKA stimulation of Xenopus CFTR by activation of PKC: role of NBD2., Chen Y., Am J Physiol Cell Physiol. November 1, 2004; 287 (5): C1436-44.


Mechanism of activation of Xenopus CFTR by stimulation of PKC., Chen Y., Am J Physiol Cell Physiol. November 1, 2004; 287 (5): C1256-63.


Identification and characterization of evolutionarily conserved pufferfish, zebrafish, and frog orthologs of GASZ., Yan W., Biol Reprod. June 1, 2004; 70 (6): 1619-25.  


Imaging CFTR: a tail to tail dimer with a central pore., Schillers H., Cell Physiol Biochem. January 1, 2004; 14 (1-2): 1-10.


Regulation of channel gating by AMP-activated protein kinase modulates cystic fibrosis transmembrane conductance regulator activity in lung submucosal cells., Hallows KR., J Biol Chem. January 10, 2003; 278 (2): 998-1004.


Cysteine string protein interacts with and modulates the maturation of the cystic fibrosis transmembrane conductance regulator., Zhang H., J Biol Chem. August 9, 2002; 277 (32): 28948-58.                    


Different activation mechanisms of cystic fibrosis transmembrane conductance regulator expressed in Xenopus laevis oocytes., Webe WM., Comp Biochem Physiol A Mol Integr Physiol. October 1, 2001; 130 (3): 521-31.


CFTR: covalent modification of cysteine-substituted channels expressed in Xenopus oocytes shows that activation is due to the opening of channels resident in the plasma membrane., Liu X., J Gen Physiol. October 1, 2001; 118 (4): 433-46.                  


Control of cystic fibrosis transmembrane conductance regulator expression by BAP31., Lambert G., J Biol Chem. June 8, 2001; 276 (23): 20340-5.


PKC-mediated stimulation of amphibian CFTR depends on a single phosphorylation consensus site. insertion of this site confers PKC sensitivity to human CFTR., Button B., J Gen Physiol. May 1, 2001; 117 (5): 457-68.                    


Plasma membrane protein clusters appear in CFTR-expressing Xenopus laevis oocytes after cAMP stimulation., Schillers H., J Membr Biol. April 1, 2001; 180 (3): 205-12.


Transport rates of GABA transporters: regulation by the N-terminal domain and syntaxin 1A., Deken SL., Nat Neurosci. October 1, 2000; 3 (10): 998-1003.


Downregulation of epithelial sodium channel (ENaC) by CFTR co-expressed in Xenopus oocytes is independent of Cl- conductance., Chabot H., J Membr Biol. June 1, 1999; 169 (3): 175-88.


A conserved region of the R domain of cystic fibrosis transmembrane conductance regulator is important in processing and function., Pasyk EA., J Biol Chem. November 27, 1998; 273 (48): 31759-64.


Characterization of 19 disease-associated missense mutations in the regulatory domain of the cystic fibrosis transmembrane conductance regulator., Vankeerberghen A., Hum Mol Genet. October 1, 1998; 7 (11): 1761-9.


Microtubule disruption inhibits AVT-stimulated Cl- secretion but not Na+ reabsorption in A6 cells., Morris RG., Am J Physiol. February 1, 1998; 274 (2): F300-14.


Microtubule disruption inhibits AVT-stimulated Cl - secretion but not Na + reabsorption in A6 cells., Morris RG., Am J Physiol Renal Physiol. February 1, 1998; 274 (2): F300-F314.


Structural cues involved in endoplasmic reticulum degradation of G85E and G91R mutant cystic fibrosis transmembrane conductance regulator., Xiong X., J Clin Invest. September 1, 1997; 100 (5): 1079-88.


Missense mutation (G480C) in the CFTR gene associated with protein mislocalization but normal chloride channel activity., Smit LS., Hum Mol Genet. February 1, 1995; 4 (2): 269-73.


Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive., Denning GM., Nature. August 27, 1992; 358 (6389): 761-4.

???pagination.result.page??? 1