Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (476) Expression Attributions Wiki
XB-ANAT-3353

Papers associated with glial cell

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 4 5 6 7 8 9 10 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

The structure of myelin sheaths in the central nervous system of Xenopus laevis (Daudin)., PETERS A., J Biophys Biochem Cytol. February 1, 1960; 7 121-6.


Regeneration and remyelination of Xenopus tadpole optic nerve fibres following transection or crush., Reier PJ., J Neurocytol. November 1, 1974; 3 (5): 591-618.


Subsurface cisterns in the vertebrate retina., Fisher SK., Cell Tissue Res. December 18, 1975; 164 (4): 473-80.


The penetration of fluorescein-conjugated and electrondense tracer proteins into Xenopus tadpole optic nerves following perineural injection., Reier PJ., Dev Biol. February 6, 1976; 102 (2): 229-44.


Axonal-ependymal associations during early regeneration of the transected spinal cord in Xenopus laevis tadpoles., Michel ME., J Neurocytol. October 1, 1979; 8 (5): 529-48.


Growth of a limb spinal nerve: an ultrastructural study., Prestige MC., J Comp Neurol. November 1, 1980; 194 (1): 235-87.


Substrate pathways demonstrated by transplanted Mauthner axons., Katz MJ., J Comp Neurol. February 1, 1981; 195 (4): 627-41.


An ultrastructural examination of early ventral root formation in amphibia., Nordlander RH., J Comp Neurol. July 10, 1981; 199 (4): 535-51.


Development of the optic nerve in Xenopus laevis. II. Gliogenesis, myelination and metamorphic remodelling., Cima C., J Embryol Exp Morphol. December 1, 1982; 72 251-67.


Axonal interactions with connective tissue and glial substrata during optic nerve regeneration in Xenopus larvae and adults., Bohn RC., Am J Anat. December 1, 1982; 165 (4): 397-419.


Immunocytochemical localization of two retinoid-binding proteins in vertebrate retina., Bunt-Milam AH., J Cell Biol. September 1, 1983; 97 (3): 703-12.


Astrocytic membrane morphology: differences between mammalian and amphibian astrocytes after axotomy., Wujek JR., J Comp Neurol. February 1, 1984; 222 (4): 607-19.


Axonal transport of [35S]methionine labeled proteins in Xenopus optic nerve: phases of transport and the effects of nerve crush on protein patterns., Szaro BG., Dev Biol. April 16, 1984; 297 (2): 337-55.


Topography of the retinal ganglion cell layer of Xenopus., Graydon ML., J Anat. August 1, 1984; 139 ( Pt 1) 145-57.


Antibodies against filamentous components in discrete cell types of the mouse retina., Dräger UC., J Neurosci. August 1, 1984; 4 (8): 2025-42.


Pharmacological modification of the light-induced responses of Müller (glial) cells in the amphibian retina., Witkovsky P., Dev Biol. February 25, 1985; 328 (1): 111-20.


Intermittent myelination of small-diameter sciatic axons in Xenopus laevis., Smith RS., J Neurocytol. April 1, 1985; 14 (2): 269-78.


Retrograde degeneration of myelinated axons and re-organization in the optic nerves of adult frogs (Xenopus laevis) following nerve injury or tectal ablation., Bohn RC., J Neurocytol. April 1, 1985; 14 (2): 221-44.


gamma-Aminobutyric acid (GABA) uptake by Xenopus oocytes injected with rat brain mRNA., Sarthy V., Dev Biol. July 1, 1986; 387 (1): 97-100.


A glia-derived neurite promoting factor with protease inhibitory activity belongs to the protease nexins., Gloor S., Cell. December 5, 1986; 47 (5): 687-93.


The distribution of F-actin in cells isolated from vertebrate retinas., Vaughan DK., Exp Eye Res. March 1, 1987; 44 (3): 393-406.      


Effect of tetraploidy on dendritic branching in neurons and glial cells of the frog, Xenopus laevis., Szaro BG., J Comp Neurol. April 8, 1987; 258 (2): 304-16.


In vitro formation of neuromuscular junctions between adult Rana muscle fibres and embryonic Xenopus neurons., Nakajima Y., Proc R Soc Lond B Biol Sci. May 22, 1987; 230 (1261): 425-41.


Factors guiding optic fibers in developing Xenopus retina., Bork T., J Comp Neurol. October 8, 1987; 264 (2): 147-58.


A glial cell line promotes the outgrowth of neurites from embryonic Xenopus retina., Sakaguchi DS., Acta Biol Hung. January 1, 1988; 39 (2-3): 201-9.


Cellular determination in the Xenopus retina is independent of lineage and birth date., Holt CE., Neuron. March 1, 1988; 1 (1): 15-26.


A developmental and ultrastructural study of the optic chiasma in Xenopus., Wilson MA., Development. March 1, 1988; 102 (3): 537-53.


Synthesis and localization of plasma proteins in the developing human brain. Integrity of the fetal blood-brain barrier to endogenous proteins of hepatic origin., Møllgård K., Dev Biol. July 1, 1988; 128 (1): 207-21.


Immunocytochemical identification of non-neuronal intermediate filament proteins in the developing Xenopus laevis nervous system., Szaro BG., Dev Biol. October 1, 1988; 471 (2): 207-24.                    


A whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus., Dent JA., Development. January 1, 1989; 105 (1): 61-74.                      


Cytokeratin filaments and desmosomes in the epithelioid cells of the perineurial and arachnoidal sheaths of some vertebrate species., Achtstätter T., Differentiation. May 1, 1989; 40 (2): 129-49.                        


Excitatory amino acids: the involvement of second messengers in the signal transduction process., Smart TG., Cell Mol Neurobiol. June 1, 1989; 9 (2): 193-206.


Growth cone interactions with a glial cell line from embryonic Xenopus retina., Sakaguchi DS., Dev Biol. July 1, 1989; 134 (1): 158-74.                    


An epithelium-type cytoskeleton in a glial cell: astrocytes of amphibian optic nerves contain cytokeratin filaments and are connected by desmosomes., Rungger-Brändle E., J Cell Biol. August 1, 1989; 109 (2): 705-16.              


The appearance of neural and glial cell markers during early development of the nervous system in the amphibian embryo., Messenger NJ., Development. September 1, 1989; 107 (1): 43-54.                      


Cell lineage analysis reveals multipotent precursors in the ciliary margin of the frog retina., Wetts R., Dev Biol. November 1, 1989; 136 (1): 254-63.


Purification and characterization of a protease from Xenopus embryos., Miyata S., Eur J Biochem. December 8, 1989; 186 (1-2): 49-54.


Molecular approach to dorsoanterior development in Xenopus laevis., Sato SM., Dev Biol. January 1, 1990; 137 (1): 135-41.          


Retinal axons in Xenopus laevis recognise differences between tectal and diencephalic glial cells in vitro., Gooday DJ., Cell Tissue Res. March 1, 1990; 259 (3): 595-8.


Characterization and developmental expression of Xenopus proliferating cell nuclear antigen (PCNA)., Leibovici M., Dev Biol. September 1, 1990; 141 (1): 183-92.          


Identification of vimentin and novel vimentin-related proteins in Xenopus oocytes and early embryos., Torpey NP., Development. December 1, 1990; 110 (4): 1185-95.            


Heterogeneity in spinal radial glia demonstrated by intermediate filament expression and HRP labelling., Holder N., J Neurocytol. December 1, 1990; 19 (6): 915-28.


Retinal axons in Xenopus show different behaviour patterns on various glial substrates in vitro., Jack J., Anat Embryol (Berl). January 1, 1991; 183 (2): 193-203.


Microglia in tadpoles of Xenopus laevis: normal distribution and the response to optic nerve injury., Goodbrand IA., Anat Embryol (Berl). January 1, 1991; 184 (1): 71-82.


A computational test of the requirements for conduction in demyelinated axons., Hines M., Restor Neurol Neurosci. January 1, 1991; 3 (2): 81-93.


Development of the olfactory nerve in the African clawed frog, Xenopus laevis: I. Normal development., Burd GD., J Comp Neurol. February 1, 1991; 304 (1): 123-34.


Neuroanatomical and functional analysis of neural tube formation in notochordless Xenopus embryos; laterality of the ventral spinal cord is lost., Clarke JD., Development. June 1, 1991; 112 (2): 499-516.                        


Carnosine in the brain and olfactory system of amphibia and reptilia: a comparative study using immunocytochemical and biochemical methods., Artero C., Neurosci Lett. September 16, 1991; 130 (2): 182-6.


Xenopus temporal retinal neurites collapse on contact with glial cells from caudal tectum in vitro., Johnston AR., Development. October 1, 1991; 113 (2): 409-17.            


Regeneration in the Xenopus tadpole optic nerve is preceded by a massive macrophage/microglial response., Wilson MA., Anat Embryol (Berl). January 1, 1992; 186 (1): 75-89.

???pagination.result.page??? 1 2 3 4 5 6 7 8 9 10 ???pagination.result.next???