Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1011) Expression Attributions Wiki
XB-ANAT-3717

Papers associated with mitotic spindle (and rhoa)

Limit to papers also referencing gene:
Show all mitotic spindle papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

The MgcRacGAP SxIP motif tethers Centralspindlin to microtubule plus ends in Xenopus laevis., Breznau EB., J Cell Sci. May 15, 2017; 130 (10): 1809-1821.              


MgcRacGAP restricts active RhoA at the cytokinetic furrow and both RhoA and Rac1 at cell-cell junctions in epithelial cells., Breznau EB., Mol Biol Cell. July 1, 2015; 26 (13): 2439-55.                


Xenopus laevis nucleotide binding protein 1 (xNubp1) is important for convergent extension movements and controls ciliogenesis via regulation of the actin cytoskeleton., Ioannou A., Dev Biol. August 15, 2013; 380 (2): 243-58.                                  


The small GTPase Cdc42 promotes membrane protrusion during polar body emission via ARP2-nucleated actin polymerization., Leblanc J., Mol Hum Reprod. May 1, 2011; 17 (5): 305-16.


Polar body emission requires a RhoA contractile ring and Cdc42-mediated membrane protrusion., Zhang X., Dev Cell. September 1, 2008; 15 (3): 386-400.


Regulation of dynamic events by microfilaments during oocyte maturation and fertilization., Sun QY., Reproduction. February 1, 2006; 131 (2): 193-205.


Cdc42 activation couples spindle positioning to first polar body formation in oocyte maturation., Ma C., Curr Biol. January 24, 2006; 16 (2): 214-20.


Centralspindlin regulates ECT2 and RhoA accumulation at the equatorial cortex during cytokinesis., Nishimura Y., J Cell Sci. January 1, 2006; 119 (Pt 1): 104-14.


A microtubule-dependent zone of active RhoA during cleavage plane specification., Bement WM., J Cell Biol. July 4, 2005; 170 (1): 91-101.              


FGF signal regulates gastrulation cell movements and morphology through its target NRH., Chung HA., Dev Biol. June 1, 2005; 282 (1): 95-110.                          

???pagination.result.page??? 1