Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Anatomy Item Literature (67) Expression Attributions Wiki
XB-ANAT-3739

Papers associated with radial glial cell

Limit to papers also referencing gene:
Results 1 - 50 of 67 results

Page(s): 1 2 Next

Sort Newest To Oldest Sort Oldest To Newest

Development of an Acute Method to Deliver Transgenes Into the Brains of Adult Xenopus laevis., Yamaguchi A., Front Neural Circuits. January 1, 2018; 12 92.                


Spinal cord regeneration in Xenopus laevis., Edwards-Faret G., Nat Protoc. January 1, 2017; 12 (2): 372-389.      


Identifying domains of EFHC1 involved in ciliary localization, ciliogenesis, and the regulation of Wnt signaling., Zhao Y., Dev Biol. March 15, 2016; 411 (2): 257-265.                      


HDAC3 But not HDAC2 Mediates Visual Experience-Dependent Radial Glia Proliferation in the Developing Xenopus Tectum., Gao J., Front Cell Neurosci. January 1, 2016; 10 221.              


Mechanism and Regulation of DNA-Protein Crosslink Repair by the DNA-Dependent Metalloprotease SPRTN., Stingele J., Mol Cell. January 1, 2016; 64 (4): 688-703.                


Structure and functional properties of Norrin mimic Wnt for signalling with Frizzled4, Lrp5/6, and proteoglycan., Chang TH., Elife. July 9, 2015; 4                               


Expression of a novel serine/threonine kinase gene, Ulk4, in neural progenitors during Xenopus laevis forebrain development., DomĂ­nguez L., Neuroscience. April 2, 2015; 290 61-79.  


HDAC1 Regulates the Proliferation of Radial Glial Cells in the Developing Xenopus Tectum., Tao Y., PLoS One. January 1, 2015; 10 (3): e0120118.                


Revealing transient structures of nucleosomes as DNA unwinds., Chen Y., Nucleic Acids Res. July 1, 2014; 42 (13): 8767-76.              


Transport of boron by the tassel-less1 aquaporin is critical for vegetative and reproductive development in maize., Durbak AR., Plant Cell. July 1, 2014; 26 (7): 2978-95.


Cyp19a1 (aromatase) expression in the Xenopus brain at different developmental stages., Coumailleau P., J Neuroendocrinol. February 26, 2014; .          


Improved method for the quantification of motility in glia and other morphologically complex cells., Sild M., Neural Plast. January 1, 2013; 2013 853727.            


Heterogeneous nuclear ribonucleoprotein K, an RNA-binding protein, is required for optic axon regeneration in Xenopus laevis., Liu Y., J Neurosci. March 7, 2012; 32 (10): 3563-74.              


In vivo time-lapse imaging of cell proliferation and differentiation in the optic tectum of Xenopus laevis tadpoles., Bestman JE., J Comp Neurol. February 1, 2012; 520 (2): 401-33.                      


Proliferation, migration and differentiation in juvenile and adult Xenopus laevis brains., D'Amico LA., Dev Biol. August 8, 2011; 1405 31-48.


Ginsenoside Rg(3) decelerates hERG K(+) channel deactivation through Ser631 residue interaction., Choi SH., Eur J Pharmacol. August 1, 2011; 663 (1-3): 59-67.


The evolutionary history of the stearoyl-CoA desaturase gene family in vertebrates., Castro LF., BMC Evol Biol. May 19, 2011; 11 132.            


Ginsenoside Rg3 enhances large conductance Ca2+-activated potassium channel currents: a role of Tyr360 residue., Choi SH., Mol Cells. February 1, 2011; 31 (2): 133-40.


Metamorphosis and the regenerative capacity of spinal cord axons in Xenopus laevis., Gibbs KM., Eur J Neurosci. January 1, 2011; 33 (1): 9-25.    


Retinal patterning by Pax6-dependent cell adhesion molecules., Rungger-Brändle E., Dev Neurobiol. September 15, 2010; 70 (11): 764-80.                


Activation of cyclosporin A transport by a novel lambda light chain of human Ig surface antigen-related gene in Xenopus laevis oocytes., Kobayashi Y., Drug Metab Dispos. September 1, 2010; 38 (9): 1427-35.


Ginsenoside Rg3 activates human KCNQ1 K+ channel currents through interacting with the K318 and V319 residues: a role of KCNE1 subunit., Choi SH., Eur J Pharmacol. July 10, 2010; 637 (1-3): 138-47.


Membrane targeted horseradish peroxidase as a marker for correlative fluorescence and electron microscopy studies., Li J., Front Neural Circuits. January 1, 2010; 4 6.              


Regulation of radial glial motility by visual experience., Tremblay M., J Neurosci. November 11, 2009; 29 (45): 14066-76.                


Mutations Leu427, Asn428, and Leu431 residues within transmembrane domain-I-segment 6 attenuate ginsenoside-mediated L-type Ca(2+) channel current inhibitions., Choi SH., Biol Pharm Bull. July 1, 2009; 32 (7): 1224-30.


A role for Leu247 residue within transmembrane domain 2 in ginsenoside-mediated alpha7 nicotinic acetylcholine receptor regulation., Lee BH., Mol Cells. May 31, 2009; 27 (5): 591-9.


The effects of ginsenoside Rg(3) on human Kv1.4 channel currents without the N-terminal rapid inactivation domain., Lee JH, Lee JH., Biol Pharm Bull. April 1, 2009; 32 (4): 614-8.


Thyroid hormone receptor subtype specificity for hormone-dependent neurogenesis in Xenopus laevis., Denver RJ., Dev Biol. February 1, 2009; 326 (1): 155-68.                


Major histocompatibility complex based resistance to a common bacterial pathogen of amphibians., Barribeau SM., PLoS One. July 16, 2008; 3 (7): e2692.              


The POU homeobox protein Oct-1 regulates radial glia formation downstream of Notch signaling., Kiyota T., Dev Biol. March 15, 2008; 315 (2): 579-92.      


Ginsenoside Rg3 inhibits human Kv1.4 channel currents by interacting with the Lys531 residue., Lee JH, Lee JH., Mol Pharmacol. March 1, 2008; 73 (3): 619-26.


Ets-1 regulates radial glia formation during vertebrate embryogenesis., Kiyota T., Organogenesis. October 1, 2007; 3 (2): 93-101.          


Mutations of arginine 222 in pre-transmembrane domain I of mouse 5-HT(3A) receptor abolish 20(R)- but not 20(S)-ginsenoside Rg(3) inhibition of 5-HT-mediated ion currents., Lee BH., Biol Pharm Bull. September 1, 2007; 30 (9): 1721-6.


Neuroprotective effects of ginsenoside Rg3 against homocysteine-induced excitotoxicity in rat hippocampus., Kim JH., Dev Biol. March 9, 2007; 1136 (1): 190-9.


Identification of ginsenoside interaction sites in 5-HT3A receptors., Lee BH., Neuropharmacology. March 1, 2007; 52 (4): 1139-50.


Characteristics of ginsenoside Rg3-mediated brain Na+ current inhibition., Lee JH, Lee JH., Mol Pharmacol. October 1, 2005; 68 (4): 1114-26.


Glial fibrillary acidic protein and vimentin expression in the frog olfactory system during metamorphosis., Huang Q., Neuroreport. September 8, 2005; 16 (13): 1439-42.


Evidence that the tertiary structure of 20(S)-ginsenoside Rg(3) with tight hydrophobic packing near the chiral center is important for Na(+) channel regulation., Kang DI., Biochem Biophys Res Commun. August 12, 2005; 333 (4): 1194-201.


Homer expression in the Xenopus tadpole nervous system., Foa L., J Comp Neurol. June 20, 2005; 487 (1): 42-53.                    


A novel RNA-binding protein in neuronal RNA granules: regulatory machinery for local translation., Shiina N., J Neurosci. April 27, 2005; 25 (17): 4420-34.              


Connexin 43 expression in glial cells of developing rhombomeres of Xenopus laevis., Katbamna B., Int J Dev Neurosci. February 1, 2004; 22 (1): 47-55.            


Effects of ginsenoside Rg2 on human neuronal nicotinic acetylcholine receptors., Sala F., J Pharmacol Exp Ther. June 1, 2002; 301 (3): 1052-9.


Functional expression of a novel ginsenoside Rf binding protein from rat brain mRNA in Xenopus laevis oocytes., Choi S., Mol Pharmacol. April 1, 2002; 61 (4): 928-35.


Intermediate filament proteins define different glial subpopulations., Yoshida M., J Neurosci Res. February 1, 2001; 63 (3): 284-9.


A novel activation of Ca(2+)-activated Cl(-) channel in Xenopus oocytes by Ginseng saponins: evidence for the involvement of phospholipase C and intracellular Ca(2+) mobilization., Choi S., Br J Pharmacol. February 1, 2001; 132 (3): 641-8.


Glial-defined rhombomere boundaries in developing Xenopus hindbrain., Yoshida M., J Comp Neurol. August 14, 2000; 424 (1): 47-57.              


Xenopus laevis peripherin (XIF3) is expressed in radial glia and proliferating neural epithelial cells as well as in neurons., Gervasi C., J Comp Neurol. July 31, 2000; 423 (3): 512-31.                      


A role for voltage-gated potassium channels in the outgrowth of retinal axons in the developing visual system., McFarlane S., J Neurosci. February 1, 2000; 20 (3): 1020-9.                  


Loss of BETA2/NeuroD leads to malformation of the dentate gyrus and epilepsy., Liu M., Proc Natl Acad Sci U S A. January 18, 2000; 97 (2): 865-70.

Page(s): 1 2 Next

Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.11.4


Major funding for Xenbase is provided by grant P41 HD064556