Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Anatomy Item Literature (609) Expression Attributions Wiki
XB-ANAT-3765

Papers associated with stria terminalis

Limit to papers also referencing gene:
Results 1 - 20 of 609 results

Page(s): 1 2 3 4 5 6 7 8 9 10 11 Next

Sort Newest To Oldest Sort Oldest To Newest

Gene expression analysis of developing cell groups in the pretectal region of Xenopus laevis., Morona R., J Comp Neurol. March 1, 2017; 525 (4): 715-752.                                            


A Tissue-Mapped Axolotl De Novo Transcriptome Enables Identification of Limb Regeneration Factors., Bryant DM., Cell Rep. January 17, 2017; 18 (3): 762-776.                          


Identification and comparative analyses of Siamois cluster genes in Xenopus laevis and tropicalis., Haramoto Y., Dev Biol. January 1, 2017; 426 (2): 374-383.                  


Role of JNK during buccopharyngeal membrane perforation, the last step of embryonic mouth formation., Houssin NS., Dev Dyn. January 1, 2017; 246 (2): 100-115.            


Xenopus, an ideal model organism to study laterality in conjoined twins., Tisler M., Genesis. January 1, 2017; 55 (1-2):         


Discovering novel phenotypes with automatically inferred dynamic models: a partial melanocyte conversion in Xenopus., Lobo D., Sci Rep. January 1, 2017; 7 41339.          


Probing forebrain to hindbrain circuit functions in Xenopus., Kelley DB., Genesis. January 1, 2017; 55 (1-2):           


Dual roles of Akirin2 protein during Xenopus neural development., Liu X., J Biol Chem. January 1, 2017; 292 (14): 5676-5684.                            


Collinear Hox-Hox interactions are involved in patterning the vertebrate anteroposterior (A-P) axis., Zhu K., PLoS One. January 1, 2017; 12 (4): e0175287.                


Direct reprogramming of fibroblasts into renal tubular epithelial cells by defined transcription factors., Kaminski MM., Nat Cell Biol. December 1, 2016; 18 (12): 1269-1280.                  


Survival fraction and phenotype alterations of Xenopus laevis embryos at 3 Gy, 150 kV X-ray irradiation., Carotenuto R., Biochem Biophys Res Commun. November 25, 2016; 480 (4): 580-585.


Mitochondrial trafficking through Rhot1 is involved in the aggregation of germinal granule components during primordial germ cell formation in Xenopus embryos., Tada H., Dev Growth Differ. October 1, 2016; 58 (8): 641-650.          


Sex reversal assessments reveal different vulnerability to endocrine disruption between deeply diverged anuran lineages., Tamschick S., Sci Rep. September 28, 2016; 6 23825.      


Embryonic expression of endothelins and their receptors in lamprey and frog reveals stem vertebrate origins of complex Endothelin signaling., Square T., Sci Rep. September 28, 2016; 6 34282.            


Sf3b4-depleted Xenopus embryos: A model to study the pathogenesis of craniofacial defects in Nager syndrome., Devotta A., Dev Biol. July 15, 2016; 415 (2): 371-382.                      


Transcription factors Mix1 and VegT, relocalization of vegt mRNA, and conserved endoderm and dorsal specification in frogs., Sudou N., Proc Natl Acad Sci U S A. May 17, 2016; 113 (20): 5628-33.                      


Proper Notch activity is necessary for the establishment of proximal cells and differentiation of intermediate, distal, and connecting tubule in Xenopus pronephros development., Katada T., Dev Dyn. April 1, 2016; 245 (4): 472-82.                  


Ciliary transcription factors and miRNAs precisely regulate Cp110 levels required for ciliary adhesions and ciliogenesis., Walentek P., Elife. March 28, 2016; 5                                   


The Lhx9-integrin pathway is essential for positioning of the proepicardial organ., Tandon P., Development. March 1, 2016; 143 (5): 831-40.                                    


A gradient of maternal Bicaudal-C controls vertebrate embryogenesis via translational repression of mRNAs encoding cell fate regulators., Park S., Development. March 1, 2016; 143 (5): 864-71.          

Page(s): 1 2 3 4 5 6 7 8 9 10 11 Next

Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.11.2


Major funding for Xenbase is provided by grant P41 HD064556