Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Anatomy Item Literature (50) Expression Attributions Wiki

Papers associated with motor axon

Limit to papers also referencing gene:
Results 1 - 50 of 50 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Studying the role of axon fasciculation during development in a computational model of the Xenopus tadpole spinal cord., Davis O., Sci Rep. January 1, 2017; 7 (1): 13551.                          

Zebrafish cyclin Dx is required for development of motor neuron progenitors, and its expression is regulated by hypoxia-inducible factor 2α., Lien HW., Sci Rep. January 1, 2016; 6 28297.            

Microtubule-associated protein tau promotes neuronal class II β-tubulin microtubule formation and axon elongation in embryonic Xenopus laevis., Liu Y., Eur J Neurosci. May 1, 2015; 41 (10): 1263-75.            

Generation of BAC transgenic tadpoles enabling live imaging of motoneurons by using the urotensin II-related peptide (ust2b) gene as a driver., Bougerol M., PLoS One. January 1, 2015; 10 (2): e0117370.                          

c-Jun N-terminal kinase phosphorylation of heterogeneous nuclear ribonucleoprotein K regulates vertebrate axon outgrowth via a posttranscriptional mechanism., Hutchins EJ., J Neurosci. September 11, 2013; 33 (37): 14666-80.                

Regulation of axonal growth and neuromuscular junction formation by neuronal phosphatase and tensin homologue signaling., Li PP., Mol Biol Cell. October 1, 2012; 23 (20): 4109-17.                

Differential regulation of axonal growth and neuromuscular junction assembly by HGF/c-Met signaling., Li PP., Dev Dyn. October 1, 2012; 241 (10): 1562-74.              

The function of p120 catenin in filopodial growth and synaptic vesicle clustering in neurons., Chen C., Mol Biol Cell. July 1, 2012; 23 (14): 2680-91.                

Axonal filopodial asymmetry induced by synaptic target., Li PP., Mol Biol Cell. July 15, 2011; 22 (14): 2480-90.            

hnRNP K post-transcriptionally co-regulates multiple cytoskeletal genes needed for axonogenesis., Liu Y., Development. July 1, 2011; 138 (14): 3079-90.                

Mechanism of acetylcholine receptor cluster formation induced by DC electric field., Zhang HL., PLoS One. January 1, 2011; 6 (10): e26805.                    

Reduced levels of survival motor neuron protein leads to aberrant motoneuron growth in a Xenopus model of muscular atrophy., Ymlahi-Ouazzani Q., Neurogenetics. February 1, 2010; 11 (1): 27-40.  

Localization of Kv2.2 protein in Xenopus laevis embryos and tadpoles., Gravagna NG., J Comp Neurol. October 10, 2008; 510 (5): 508-24.                        

A crucial role for hnRNP K in axon development in Xenopus laevis., Liu Y., Development. September 1, 2008; 135 (18): 3125-35.                

Specificity, affinity and efficacy of iota-conotoxin RXIA, an agonist of voltage-gated sodium channels Na(V)1.2, 1.6 and 1.7., Fiedler B., Biochem Pharmacol. June 15, 2008; 75 (12): 2334-44.

Guanylate cyclase and cyclic GMP-dependent protein kinase regulate agrin signaling at the developing neuromuscular junction., Godfrey EW., Dev Biol. July 15, 2007; 307 (2): 195-201.      

Discovery and characterization of the short kappaA-conotoxins: a novel subfamily of excitatory conotoxins., Teichert RW., Toxicon. March 1, 2007; 49 (3): 318-28.

Involvement of p120 catenin in myopodial assembly and nerve-muscle synapse formation., Madhavan R., J Neurobiol. November 1, 2006; 66 (13): 1511-27.                

Mitochondrial clustering at the vertebrate neuromuscular junction during presynaptic differentiation., Lee CW., J Neurobiol. May 1, 2006; 66 (6): 522-36.

Reduced U snRNP assembly causes motor axon degeneration in an animal model for spinal muscular atrophy., Winkler C., Genes Dev. October 1, 2005; 19 (19): 2320-30.  

Homer expression in the Xenopus tadpole nervous system., Foa L., J Comp Neurol. June 20, 2005; 487 (1): 42-53.                    

Receptor tyrosine phosphatases guide vertebrate motor axons during development., Stepanek L., J Neurosci. April 13, 2005; 25 (15): 3813-23.

Coordinated motor neuron axon growth and neuromuscular synaptogenesis are promoted by CPG15 in vivo., Javaherian A., Neuron. February 17, 2005; 45 (4): 505-12.

Nitric oxide synthase activity is required for postsynaptic differentiation of the embryonic neuromuscular junction., Schwarte RC., Dev Biol. September 15, 2004; 273 (2): 276-84.

Neurotrophin-independent attraction of growing sensory and motor axons towards developing Xenopus limb buds in vitro., Tonge DA., Dev Biol. January 1, 2004; 265 (1): 169-80.                

Ca2+ influx-independent synaptic potentiation mediated by mitochondrial Na(+)-Ca2+ exchanger and protein kinase C., Yang F., J Cell Biol. November 10, 2003; 163 (3): 511-23.                    

MRF4 gene expression in Xenopus embryos and aneural myofibers., Ataian Y., Dev Dyn. March 1, 2003; 226 (3): 551-4.  

The diaphragm: two physiological muscles in one., Pickering M., J Anat. October 1, 2002; 201 (4): 305-12.

Zebrafish deadly seven functions in neurogenesis., Gray M., Dev Biol. September 15, 2001; 237 (2): 306-23.

Overexpression of agrin isoforms in Xenopus embryos alters the distribution of synaptic acetylcholine receptors during development of the neuromuscular junction., Godfrey EW., Dev Biol. January 1, 1999; 205 (1): 22-32.          

Xefiltin, a Xenopus laevis neuronal intermediate filament protein, is expressed in actively growing optic axons during development and regeneration., Zhao Y., J Neurobiol. November 20, 1997; 33 (6): 811-24.                  

Effects of intermediate filament disruption on the early development of the peripheral nervous system of Xenopus laevis., Lin W., Dev Biol. October 10, 1996; 179 (1): 197-211.            

Developmental expression of a neuron-specific beta-tubulin in frog (Xenopus laevis): a marker for growing axons during the embryonic period., Moody SA., J Comp Neurol. January 8, 1996; 364 (2): 219-30.            

Differential distributions of HNK-1 and tenascin immunoreactivity during innervation of myotomal muscle in Xenopus., Somasekhar T., Brain Res Dev Brain Res. August 28, 1995; 88 (1): 53-67.

Distribution and morphology of sacral spinal cord neurons innervating pelvic structures in Xenopus laevis., Campbell HL., J Comp Neurol. September 22, 1994; 347 (4): 619-27.

Laryngeal muscle and motor neuron plasticity in Xenopus laevis: testicular masculinization of a developing neuromuscular system., Watson JT., J Neurobiol. December 1, 1993; 24 (12): 1615-25.

Ether-à-go-go encodes a voltage-gated channel permeable to K+ and Ca2+ and modulated by cAMP., Brüggemann A., Nature. September 30, 1993; 365 (6445): 445-8.

Differential sensitivity to androgens within a sexually dimorphic muscle of male frogs (Xenopus laevis)., Regnier M., J Neurobiol. September 1, 1993; 24 (9): 1215-28.

Retinoic acid causes abnormal development and segmental patterning of the anterior hindbrain in Xenopus embryos., Papalopulu N., Development. December 1, 1991; 113 (4): 1145-58.                          

Neuroanatomical and functional analysis of neural tube formation in notochordless Xenopus embryos; laterality of the ventral spinal cord is lost., Clarke JD., Development. June 1, 1991; 112 (2): 499-516.                        

The appearance of acetylated alpha-tubulin during early development and cellular differentiation in Xenopus., Chu DT., Dev Biol. November 1, 1989; 136 (1): 104-17.                  

Development of early swimming in Xenopus laevis embryos: myotomal musculature, its innervation and activation., van Mier P., Neuroscience. January 1, 1989; 32 (1): 113-26.

The development of acetylcholinesterase activity in the embryonic nervous system of the frog, Xenopus laevis., Moody SA., Dev Biol. April 1, 1988; 467 (2): 225-32.

The growth of motor axons in the spinal cord of Xenopus embryos., Westerfield M., Dev Biol. May 1, 1985; 109 (1): 96-101.

Developing descending neurons of the early Xenopus tail spinal cord in the caudal spinal cord of early Xenopus., Nordlander RH., J Comp Neurol. September 1, 1984; 228 (1): 117-28.

Compartmental relationships between anuran primary spinal motoneurons and somitic muscle fibers that they first innervate., Moody SA., J Neurosci. August 1, 1983; 3 (8): 1670-82.

An ultrastructural examination of early ventral root formation in amphibia., Nordlander RH., J Comp Neurol. July 10, 1981; 199 (4): 535-51.

Interaction between motor axons from two different nerves reinnervating the pectoral muscle of Xenopus laevis., Haimann C., J Physiol. January 1, 1981; 310 257-72.

Electrical responses of muscle fibres in a small foot muscle of Xenopus laevis., Ridge RM., J Physiol. September 1, 1980; 306 41-9.

Polyneural innervation: mechanical properties of overlapping motor units in a small foot muscle of Xenopus laevis., Ridge RM., J Physiol. September 1, 1980; 306 29-39.

Page(s): 1

Xenbase: The Xenopus Model Organism Knowledgebase.
Version: 4.15.0
Major funding for Xenbase is provided by grant P41 HD064556