Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Stage Literature (255) Attributions Wiki
XB-STAGE-41

Papers associated with NF stage 23

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 4 5 6 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Activation of a T-box-Otx2-Gsc gene network independent of TBP and TBP-related factors., Gazdag E, Jacobi UG, van Kruijsbergen I, Weeks DL, Veenstra GJ., Development. April 15, 2016; 143 (8): 1340-50.                    


E-cadherin is required for cranial neural crest migration in Xenopus laevis., Huang C, Kratzer MC, Wedlich D, Kashef J., Dev Biol. March 15, 2016; 411 (2): 159-171.                        


Identification of genes expressed in the migrating primitive myeloid lineage of Xenopus laevis., Agricola ZN, Jagpal AK, Allbee AW, Prewitt AR, Shifley ET, Rankin SA, Rankin SA, Zorn AM, Kenny AP., Dev Dyn. January 1, 2016; 245 (1): 47-55.                      


Mechanical strain determines the axis of planar polarity in ciliated epithelia., Chien YH, Keller R, Kintner C, Shook DR., Curr Biol. November 2, 2015; 25 (21): 2774-2784.              


Evolutionary Conservation of the Early Axon Scaffold in the Vertebrate Brain., Ware M, Dupé V, Schubert FR., Dev Dyn. October 1, 2015; 244 (10): 1202-14.          


A thioredoxin fold protein Sh3bgr regulates Enah and is necessary for proper sarcomere formation., Jang DG, Sim HJ, Song EK, Medina-Ruiz S, Seo JK, Park TJ., Dev Biol. September 1, 2015; 405 (1): 1-9.                                    


TGF-β Signaling Regulates the Differentiation of Motile Cilia., Tözser J, Earwood R, Kato A, Brown J, Tanaka K, Didier R, Megraw TL, Blum M, Kato Y., Cell Rep. May 19, 2015; 11 (7): 1000-7.                


Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation., Zhang X, Cheong SM, Amado NG, Reis AH, MacDonald BT, Zebisch M, Jones EY, Abreu JG, He X., Dev Cell. March 23, 2015; 32 (6): 719-30.                                  


The ribosome biogenesis factor Nol11 is required for optimal rDNA transcription and craniofacial development in Xenopus., Griffin JN, Sondalle SB, Del Viso F, Baserga SJ, Khokha MK., PLoS Genet. March 10, 2015; 11 (3): e1005018.                              


The alternative splicing regulator Tra2b is required for somitogenesis and regulates splicing of an inhibitory Wnt11b isoform., Dichmann DS, Walentek P, Harland RM., Cell Rep. February 3, 2015; 10 (4): 527-36.                    


Aminolevulinate synthase 2 mediates erythrocyte differentiation by regulating larval globin expression during Xenopus primary hematopoiesis., Ogawa-Otomo A, Kurisaki A, Ito Y., Biochem Biophys Res Commun. January 2, 2015; 456 (1): 476-81.            


Comparative expression analysis of pfdn6a and tcp1α during Xenopus development., Marracci S, Martini D, Giannaccini M, Giudetti G, Dente L, Andreazzoli M., Int J Dev Biol. January 1, 2015; 59 (4-6): 235-40.                      


Developmental expression of the N-myc downstream regulated gene (Ndrg) family during Xenopus tropicalis embryogenesis., Zhong C, Zhou YK, Yang SS, Zhao JF, Zhu XL, Chen HH, Chen PC, Huang LQ, Huang X., Int J Dev Biol. January 1, 2015; 59 (10-12): 511-7.                                


Early stages of induction of anterior head ectodermal properties in Xenopus embryos are mediated by transcriptional cofactor ldb1., Plautz CZ, Zirkle BE, Deshotel MJ, Grainger RM., Dev Dyn. December 1, 2014; 243 (12): 1606-18.              


Sox5 Is a DNA-binding cofactor for BMP R-Smads that directs target specificity during patterning of the early ectoderm., Nordin K, LaBonne C., Dev Cell. November 10, 2014; 31 (3): 374-382.                              


Embryological manipulations in the developing Xenopus inner ear reveal an intrinsic role for Wnt signaling in dorsal-ventral patterning., Forristall CA, Stellabotte F, Castillo A, Collazo A., Dev Dyn. October 1, 2014; 243 (10): 1262-74.            


Retinoic acid induced-1 (Rai1) regulates craniofacial and brain development in Xenopus., Tahir R, Kennedy A, Elsea SH, Dickinson AJ., Mech Dev. August 1, 2014; 133 91-104.                            


Sulf1 influences the Shh morphogen gradient during the dorsal ventral patterning of the neural tube in Xenopus tropicalis., Ramsbottom SA, Maguire RJ, Fellgett SW, Pownall ME., Dev Biol. July 15, 2014; 391 (2): 207-18.                  


RFX7 is required for the formation of cilia in the neural tube., Manojlovic Z, Earwood R, Kato A, Stefanovic B, Kato Y., Mech Dev. May 1, 2014; 132 28-37.                  


Ras-dva1 small GTPase regulates telencephalon development in Xenopus laevis embryos by controlling Fgf8 and Agr signaling at the anterior border of the neural plate., Tereshina MB, Ermakova GV, Ivanova AS, Zaraisky AG., Biol Open. March 15, 2014; 3 (3): 192-203.                        


Proteomic profiling of cardiac tissue by isolation of nuclei tagged in specific cell types (INTACT)., Amin NM, Greco TM, Kuchenbrod LM, Rigney MM, Chung MI, Wallingford JB, Cristea IM, Conlon FL., Development. February 1, 2014; 141 (4): 962-73.            


Comparative expression analysis of cysteine-rich intestinal protein family members crip1, 2 and 3 during Xenopus laevis embryogenesis., Hempel A, Kühl SJ., Int J Dev Biol. January 1, 2014; 58 (10-12): 841-9.                                              


Cell segregation, mixing, and tissue pattern in the spinal cord of the Xenopus laevis neurula., Edlund AF, Davidson LA, Keller RE., Dev Dyn. October 1, 2013; 242 (10): 1134-46.  


Xenopus laevis nucleotide binding protein 1 (xNubp1) is important for convergent extension movements and controls ciliogenesis via regulation of the actin cytoskeleton., Ioannou A, Santama N, Skourides PA., Dev Biol. August 15, 2013; 380 (2): 243-58.                                  


MRAS GTPase is a novel stemness marker that impacts mouse embryonic stem cell plasticity and Xenopus embryonic cell fate., Mathieu ME, Faucheux C, Saucourt C, Soulet F, Gauthereau X, Fédou S, Trouillas M, Thézé N, Thiébaud P, Boeuf H., Development. August 1, 2013; 140 (16): 3311-22.              


Inositol kinase and its product accelerate wound healing by modulating calcium levels, Rho GTPases, and F-actin assembly., Soto X, Li J, Lea R, Dubaissi E, Papalopulu N, Amaya E., Proc Natl Acad Sci U S A. July 2, 2013; 110 (27): 11029-34.                                      


sox4 and sox11 function during Xenopus laevis eye development., Cizelsky W, Hempel A, Metzig M, Tao S, Hollemann T, Kühl M, Kühl SJ., PLoS One. July 1, 2013; 8 (7): e69372.              


WNK4 is an essential effector of anterior formation in FGF signaling., Shimizu M, Goto T, Sato A, Shibuya H., Genes Cells. June 1, 2013; 18 (6): 442-9.        


Serotonin has early, cilia-independent roles in Xenopus left-right patterning., Vandenberg LN, Lemire JM, Levin M., Dis Model Mech. January 1, 2013; 6 (1): 261-8.    


Eif4a3 is required for accurate splicing of the Xenopus laevis ryanodine receptor pre-mRNA., Haremaki T, Weinstein DC., Dev Biol. December 1, 2012; 372 (1): 103-10.            


SUMOylated SoxE factors recruit Grg4 and function as transcriptional repressors in the neural crest., Lee PC, Taylor-Jaffe KM, Nordin KM, Prasad MS, Lander RM, LaBonne C., J Cell Biol. September 3, 2012; 198 (5): 799-813.              


Rab11 regulates planar polarity and migratory behavior of multiciliated cells in Xenopus embryonic epidermis., Kim K, Lake BB, Haremaki T, Weinstein DC, Sokol SY., Dev Dyn. September 1, 2012; 241 (9): 1385-95.            


Ciliary and non-ciliary expression and function of PACRG during vertebrate development., Thumberger T, Hagenlocher C, Tisler M, Beyer T, Tietze N, Schweickert A, Feistel K, Blum M., Cilia. August 1, 2012; 1 (1): 13.                        


Mutual repression between Gbx2 and Otx2 in sensory placodes reveals a general mechanism for ectodermal patterning., Steventon B, Mayor R, Streit A., Dev Biol. July 1, 2012; 367 (1): 55-65.                


Myogenic waves and myogenic programs during Xenopus embryonic myogenesis., Della Gaspera B, Armand AS, Sequeira I, Chesneau A, Mazabraud A, Lécolle S, Charbonnier F, Chanoine C., Dev Dyn. May 1, 2012; 241 (5): 995-1007.                                    


Indian hedgehog signaling is required for proper formation, maintenance and migration of Xenopus neural crest., Agüero TH, Fernández JP, López GA, Tríbulo C, Aybar MJ., Dev Biol. April 15, 2012; 364 (2): 99-113.                    


The signaling protein CD38 is essential for early embryonic development., Churamani D, Geach TJ, Ramakrishnan L, Prideaux N, Patel S, Dale L., J Biol Chem. March 2, 2012; 287 (10): 6974-8.        


Simple, fast, tissue-specific bacterial artificial chromosome transgenesis in Xenopus., Fish MB, Nakayama T, Grainger RM., Genesis. March 1, 2012; 50 (3): 307-15.        


Xaml1/Runx1 is required for the specification of Rohon-Beard sensory neurons in Xenopus., Park BY, Hong CS, Weaver JR, Rosocha EM, Saint-Jeannet JP., Dev Biol. February 1, 2012; 362 (1): 65-75.                


Mustn1 is essential for craniofacial chondrogenesis during Xenopus development., Gersch RP, Kirmizitas A, Sobkow L, Sorrentino G, Thomsen GH, Hadjiargyrou M., Gene Expr Patterns. January 1, 2012; 12 (3-4): 145-53.                


Mef2d acts upstream of muscle identity genes and couples lateral myogenesis to dermomyotome formation in Xenopus laevis., Della Gaspera B, Armand AS, Lecolle S, Charbonnier F, Chanoine C., PLoS One. January 1, 2012; 7 (12): e52359.                  


Actin and microtubules drive differential aspects of planar cell polarity in multiciliated cells., Werner ME, Hwang P, Huisman F, Taborek P, Yu CC, Mitchell BJ., J Cell Biol. October 3, 2011; 195 (1): 19-26.          


The dual regulator Sufu integrates Hedgehog and Wnt signals in the early Xenopus embryo., Min TH, Kriebel M, Hou S, Pera EM., Dev Biol. October 1, 2011; 358 (1): 262-76.                            


V-ATPase-dependent ectodermal voltage and pH regionalization are required for craniofacial morphogenesis., Vandenberg LN, Morrie RD, Adams DS., Dev Dyn. August 1, 2011; 240 (8): 1889-904.                        


Xenopus laevis insulin receptor substrate IRS-1 is important for eye development., Bugner V, Aurhammer T, Kühl M., Dev Dyn. July 1, 2011; 240 (7): 1705-15.            


The spatio-temporal expression of ProSAP/shank family members and their interaction partner LAPSER1 during Xenopus laevis development., Gessert S, Schmeisser MJ, Tao S, Boeckers TM, Kühl M., Dev Dyn. June 1, 2011; 240 (6): 1528-36.                      


Peter Pan functions independently of its role in ribosome biogenesis during early eye and craniofacial cartilage development in Xenopus laevis., Bugner V, Tecza A, Gessert S, Kühl M., Development. June 1, 2011; 138 (11): 2369-78.                        


EBF factors drive expression of multiple classes of target genes governing neuronal development., Green YS, Vetter ML., Neural Dev. April 30, 2011; 6 19.                                                          


Novel strategy for subretinal delivery in Xenopus., Gonzalez-Fernandez F, Dann CA, Garlipp MA., Mol Vis. March 23, 2011; 17 2956-69.                      


APOBEC2, a selective inhibitor of TGFβ signaling, regulates left-right axis specification during early embryogenesis., Vonica A, Rosa A, Arduini BL, Brivanlou AH., Dev Biol. February 1, 2011; 350 (1): 13-23.                

???pagination.result.page??? 1 2 3 4 5 6 ???pagination.result.next???