Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1649) Expression Attributions Wiki
XB-ANAT-449

Papers associated with blood vessel (and vim)

Limit to papers also referencing gene:
Show all blood vessel papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

TBC1D32 variants disrupt retinal ciliogenesis and cause retinitis pigmentosa., Bocquet B., JCI Insight. November 8, 2023; 8 (21):                                               


ADAM11 a novel regulator of Wnt and BMP4 signaling in neural crest and cancer., Pandey A., Front Cell Dev Biol. January 1, 2023; 11 1271178.                      


Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells., Zhang Z., J Biol Chem. August 4, 2017; 292 (31): 12842-12859.        


In Vivo Analysis of the Neurovascular Niche in the Developing Xenopus Brain., Lau M., eNeuro. July 31, 2017; 4 (4):                           


Notch signaling, wt1 and foxc2 are key regulators of the podocyte gene regulatory network in Xenopus., White JT., Development. June 1, 2010; 137 (11): 1863-73.                            


Symplekin, a constitutive protein of karyo- and cytoplasmic particles involved in mRNA biogenesis in Xenopus laevis oocytes., Hofmann I., Mol Biol Cell. May 1, 2002; 13 (5): 1665-76.


Cloning of multiple forms of goldfish vimentin: differential expression in CNS., Glasgow E., J Neurochem. August 1, 1994; 63 (2): 470-81.


Distinct distribution of vimentin and cytokeratin in Xenopus oocytes and early embryos., Torpey NP., J Cell Sci. January 1, 1992; 101 ( Pt 1) 151-60.                


Assembly and structure of calcium-induced thick vimentin filaments., Hofmann I., Eur J Cell Biol. December 1, 1991; 56 (2): 328-41.


An epithelium-type cytoskeleton in a glial cell: astrocytes of amphibian optic nerves contain cytokeratin filaments and are connected by desmosomes., Rungger-Brändle E., J Cell Biol. August 1, 1989; 109 (2): 705-16.              


Expression of intermediate filament proteins during development of Xenopus laevis. I. cDNA clones encoding different forms of vimentin., Herrmann H., Development. February 1, 1989; 105 (2): 279-98.                      


A whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus., Dent JA., Development. January 1, 1989; 105 (1): 61-74.                      


Cytokeratins in certain endothelial and smooth muscle cells of two taxonomically distant vertebrate species, Xenopus laevis and man., Jahn L., Differentiation. January 1, 1987; 36 (3): 234-54.                        


The appearance and distribution of intermediate filament proteins during differentiation of the central nervous system, skin and notochord of Xenopus laevis., Godsave SF., J Embryol Exp Morphol. September 1, 1986; 97 201-23.              

???pagination.result.page??? 1