Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Anatomy Item Literature (309) Expression Attributions Wiki
XB-ANAT-452

Papers associated with melanophore

Limit to papers also referencing gene:
Results 1 - 50 of 309 results

Page(s): 1 2 3 4 5 6 7 Next

Sort Newest To Oldest Sort Oldest To Newest

The regulation of skin pigmentation in response to environmental light by pineal Type II opsins and skin melanophore melatonin receptors., Bertolesi GE., J Photochem Photobiol B. September 11, 2020; 212 112024.  


The Flavor Enhancer Maltol Increases Pigment Aggregation in Dermal and Neural Melanophores in Xenopus laevis Tadpoles., Dahora LI., Environ Toxicol Chem. January 1, 2020; 39 (2): 381-395.


Model systems for regeneration: Xenopus., Phipps LS., Development. January 1, 2020; 147 (6):           


Simple embryo injection of long single-stranded donor templates with the CRISPR/Cas9 system leads to homology-directed repair in Xenopus tropicalis and Xenopus laevis., Nakayama T., Genesis. January 1, 2020; 58 (6): e23366.


Whole-Cell Photoacoustic Sensor Based on Pigment Relocalization., Lauri A., ACS Sens. January 1, 2019; 4 (3): 603-612.            


Distribution and neuronal circuit of spexin 1/2 neurons in the zebrafish CNS., Kim E., Sci Rep. January 1, 2019; 9 (1): 5025.              


Unusual light-reflecting pigment cells appear in the Xenopus neural tube culture system in the presence of guanosine., Fukuzawa T., Tissue Cell. October 1, 2018; 54 55-58.


A wide variety of Mitf transcript variants are expressed in the Xenopus laevis periodic albino mutant., Fukuzawa T., Genes Cells. June 19, 2018;                 


Gli2 is required for the induction and migration of Xenopus laevis neural crest., Cerrizuela S., Mech Dev. January 1, 2018; 154 219-239.                      


A transition from SoxB1 to SoxE transcription factors is essential for progression from pluripotent blastula cells to neural crest cells., Buitrago-Delgado E., Dev Biol. January 1, 2018; 444 (2): 50-61.                


Stimulation of microtubule-based transport by nucleation of microtubules on pigment granules., Semenova I., Mol Biol Cell. June 1, 2017; 28 (11): 1418-1425.        


The Nedd4 binding protein 3 is required for anterior neural development in Xenopus laevis., Kiem LM., Dev Biol. March 1, 2017; 423 (1): 66-76.                            


Discovering novel phenotypes with automatically inferred dynamic models: a partial melanocyte conversion in Xenopus., Lobo D., Sci Rep. January 1, 2017; 7 41339.          


Interaction and developmental activation of two neuroendocrine systems that regulate light-mediated skin pigmentation., Bertolesi GE., Pigment Cell Melanoma Res. January 1, 2017; 30 (4): 413-423.


Evolution of the hypoxia-sensitive cells involved in amniote respiratory reflexes., Hockman D., Elife. January 1, 2017; 6                 


A functional approach to understanding the role of NCKX5 in Xenopus pigmentation., Williams RM., PLoS One. January 1, 2017; 12 (7): e0180465.                  


Angiopoietin-like 4 Is a Wnt Signaling Antagonist that Promotes LRP6 Turnover., Kirsch N., Dev Cell. January 1, 2017; 43 (1): 71-82.e6.                                


Embryonic expression of endothelins and their receptors in lamprey and frog reveals stem vertebrate origins of complex Endothelin signaling., Square T., Sci Rep. September 28, 2016; 6 34282.                          


Recombinant Ranaviruses for Studying Evolution of Host-Pathogen Interactions in Ectothermic Vertebrates., Robert J, Robert J., Viruses. July 6, 2016; 8 (7):     


Pharmacological induction of skin pigmentation unveils the neuroendocrine circuit regulated by light., Bertolesi GE., Pigment Cell Melanoma Res. March 1, 2016; 29 (2): 186-98.


Musculocontractural Ehlers-Danlos syndrome and neurocristopathies: dermatan sulfate is required for Xenopus neural crest cells to migrate and adhere to fibronectin., Gouignard N., Dis Model Mech. January 1, 2016; 9 (6): 607-20.                      


Two light-activated neuroendocrine circuits arising in the eye trigger physiological and morphological pigmentation., Bertolesi GE., Pigment Cell Melanoma Res. January 1, 2016; 29 (6): 688-701.


Semi-solid tumor model in Xenopus laevis/gilli cloned tadpoles for intravital study of neovascularization, immune cells and melanophore infiltration., Haynes-Gimore N., Dev Biol. December 15, 2015; 408 (2): 205-12.                


Xenopus: An in vivo model for imaging the inflammatory response following injury and bacterial infection., Paredes R., Dev Biol. December 15, 2015; 408 (2): 213-28.                                              


Serotonergic regulation of melanocyte conversion: A bioelectrically regulated network for stochastic all-or-none hyperpigmentation., Lobikin M., Sci Signal. October 6, 2015; 8 (397): ra99.


Asymmetries in kinesin-2 and cytoplasmic dynein contributions to melanosome transport., De Rossi MC., FEBS Lett. September 14, 2015; 589 (19 Pt B): 2763-8.


Ferritin H subunit gene is specifically expressed in melanophore precursor-derived white pigment cells in which reflecting platelets are formed from stage II melanosomes in the periodic albino mutant of Xenopus laevis., Fukuzawa T., Cell Tissue Res. September 1, 2015; 361 (3): 733-44.                  


Melanopsins: Localization and Phototransduction in Xenopus laevis Melanophores., Moraes MN., Photochem Photobiol. September 1, 2015; 91 (5): 1133-41.


Melanopsin photoreception in the eye regulates light-induced skin colour changes through the production of α-MSH in the pituitary gland., Bertolesi GE., Pigment Cell Melanoma Res. September 1, 2015; 28 (5): 559-71.


Functional analysis of Hairy genes in Xenopus neural crest initial specification and cell migration., Vega-López GA., Dev Dyn. August 1, 2015; 244 (8): 988-1013.                            


In Vivo Study of Dynamics and Stability of Dendritic Spines on Olfactory Bulb Interneurons in Xenopus laevis Tadpoles., Huang YB., PLoS One. January 1, 2015; 10 (10): e0140752.            


Regulation of microtubule-based transport by MAP4., Semenova I., Mol Biol Cell. October 15, 2014; 25 (20): 3119-32.              


Endothelin modulates the circadian expression of non-visual opsins., Moraes MN., Gen Comp Endocrinol. September 1, 2014; 205 279-86.


The roles of Frizzled-3 and Wnt3a on melanocyte development: in vitro studies on neural crest cells and melanocyte precursor cell lines., Chang CH., J Dermatol Sci. August 1, 2014; 75 (2): 100-8.


Effect of light on expression of clock genes in Xenopus laevis melanophores., Magalhães Moraes MN., Photochem Photobiol. May 1, 2014; 90 (3): 696-701.


Polarized Wnt signaling regulates ectodermal cell fate in Xenopus., Huang YL., Dev Cell. April 28, 2014; 29 (2): 250-7.                  


Xenopus embryonic epidermis as a mucociliary cellular ecosystem to assess the effect of sex hormones in a non-reproductive context., Castillo-Briceno P., Front Zool. February 6, 2014; 11 (1): 9.                


Regulation of melanopsins and Per1 by α -MSH and melatonin in photosensitive Xenopus laevis melanophores., Moraes MN., Biomed Res Int. January 1, 2014; 2014 654710.      


The melanocyte photosensory system in the human skin., Iyengar B., Springerplus. December 1, 2013; 2 (1): 158.                


Melanocortin MC(4) receptor-mediated feeding and grooming in rodents., Mul JD., Eur J Pharmacol. November 5, 2013; 719 (1-3): 192-201.


Angiogenesis in the intermediate lobe of the pituitary gland alters its structure and function., Tanaka S., Gen Comp Endocrinol. May 1, 2013; 185 10-8.        


Acoustic detection of melanosome transport in Xenopus laevis melanophores., Frost R., Anal Biochem. April 1, 2013; 435 (1): 10-8.


Generation of albino Xenopus tropicalis using zinc-finger nucleases., Nakajima K., Dev Growth Differ. December 1, 2012; 54 (9): 777-84.


B-Raf and C-Raf are required for melanocyte stem cell self-maintenance., Valluet A., Cell Rep. October 25, 2012; 2 (4): 774-80.


Pituitary melanotrope cells of Xenopus laevis are of neural ridge origin and do not require induction by the infundibulum., Eagleson GW., Gen Comp Endocrinol. August 1, 2012; 178 (1): 116-22.            


The role of brain-derived neurotrophic factor in the regulation of cell growth and gene expression in melanotrope cells of Xenopus laevis., Jenks BG., Gen Comp Endocrinol. July 1, 2012; 177 (3): 315-21.      


Specification of neural crest into sensory neuron and melanocyte lineages., Pavan WJ., Dev Biol. June 1, 2012; 366 (1): 55-63.


Gene expression profiling of pituitary melanotrope cells during their physiological activation., Kuribara M., J Cell Physiol. January 1, 2012; 227 (1): 288-96.


Targeted inactivation of Snail family EMT regulatory factors by a Co(III)-Ebox conjugate., Harney AS., PLoS One. January 1, 2012; 7 (2): e32318.            


Neurally Derived Tissues in Xenopus laevis Embryos Exhibit a Consistent Bioelectrical Left-Right Asymmetry., Pai VP., Stem Cells Int. January 1, 2012; 2012 353491.          

Page(s): 1 2 3 4 5 6 7 Next

Xenbase: The Xenopus Model Organism Knowledgebase.
Version: 4.16.0
Major funding for Xenbase is provided by grant P41 HD064556