Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (18807) Expression Attributions Wiki
XB-ANAT-476

Papers associated with cell (and cftr)

Limit to papers also referencing gene:
Show all cell papers
???pagination.result.count???

???pagination.result.page??? 1 2 3 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

A single-cell, time-resolved profiling of Xenopus mucociliary epithelium reveals nonhierarchical model of development., Lee J., Sci Adv. April 7, 2023; 9 (14): eadd5745.                                                          


UXT chaperone prevents proteotoxicity by acting as an autophagy adaptor for p62-dependent aggrephagy., Yoon MJ., Nat Commun. March 29, 2021; 12 (1): 1955.                


FXYD protein isoforms differentially modulate human Na/K pump function., Meyer DJ., J Gen Physiol. December 7, 2020; 152 (12):                         


Engineered transfer RNAs for suppression of premature termination codons., Lueck JD., Nat Commun. February 18, 2019; 10 (1): 822.          


The Epithelial Sodium Channel Is a Modifier of the Long-Term Nonprogressive Phenotype Associated with F508del CFTR Mutations., Agrawal PB., Am J Respir Cell Mol Biol. December 1, 2017; 57 (6): 711-720.


Mammalian odorant receptor tuning breadth persists across distinct odorant panels., Kepchia D., PLoS One. September 8, 2017; 12 (9): e0185329.          


Hydrogen sulfide stimulates CFTR in Xenopus oocytes by activation of the cAMP/PKA signalling axis., Perniss A., Sci Rep. June 14, 2017; 7 (1): 3517.        


Bacterial Sphingomyelinase is a State-Dependent Inhibitor of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR)., Stauffer BB., Sci Rep. June 7, 2017; 7 (1): 2931.                


CFTR-β-catenin interaction regulates mouse embryonic stem cell differentiation and embryonic development., Liu Z., Cell Death Differ. January 1, 2017; 24 (1): 98-110.


CFTR channel in oocytes from Xenopus laevis and its regulation by xShroom1 protein., Palma AG., Pflugers Arch. May 1, 2016; 468 (5): 871-80.


ANP and CNP activate CFTR expressed in Xenopus laevis oocytes by direct activation of PKA., Stahl K., J Recept Signal Transduct Res. January 1, 2015; 35 (5): 493-504.


Counteracting suppression of CFTR and voltage-gated K+ channels by a bacterial pathogenic factor with the natural product tannic acid., Ramu Y., Elife. October 14, 2014; 3 e03683.        


Cystic fibrosis transmembrane conductance regulator (CFTR) potentiators protect G551D but not ΔF508 CFTR from thermal instability., Liu X., Biochemistry. September 9, 2014; 53 (35): 5613-8.        


Three charged amino acids in extracellular loop 1 are involved in maintaining the outer pore architecture of CFTR., Cui G., J Gen Physiol. August 1, 2014; 144 (2): 159-79.                          


Serum and glucocorticoid-inducible kinase1 increases plasma membrane wt-CFTR in human airway epithelial cells by inhibiting its endocytic retrieval., Bomberger JM., PLoS One. February 19, 2014; 9 (2): e89599.                  


Discovery of novel ligands for mouse olfactory receptor MOR42-3 using an in silico screening approach and in vitro validation., Bavan S., PLoS One. January 1, 2014; 9 (3): e92064.            


Influenza matrix protein 2 alters CFTR expression and function through its ion channel activity., Londino JD., Am J Physiol Lung Cell Mol Physiol. May 1, 2013; 304 (9): L582-92.


A characterization of the Manduca sexta serotonin receptors in the context of olfactory neuromodulation., Dacks AM., PLoS One. January 1, 2013; 8 (7): e69422.          


Nedd4-2 does not regulate wt-CFTR in human airway epithelial cells., Koeppen K., Am J Physiol Lung Cell Mol Physiol. October 15, 2012; 303 (8): L720-7.


Role of binding and nucleoside diphosphate kinase A in the regulation of the cystic fibrosis transmembrane conductance regulator by AMP-activated protein kinase., King JD., J Biol Chem. September 28, 2012; 287 (40): 33389-400.              


Regulation of ENaC biogenesis by the stress response protein SERP1., Faria D., Pflugers Arch. June 1, 2012; 463 (6): 819-27.


The testis anion transporter TAT1 (SLC26A8) physically and functionally interacts with the cystic fibrosis transmembrane conductance regulator channel: a potential role during sperm capacitation., Rode B., Hum Mol Genet. March 15, 2012; 21 (6): 1287-98.


Divergent CFTR orthologs respond differently to the channel inhibitors CFTRinh-172, glibenclamide, and GlyH-101., Stahl M., Am J Physiol Cell Physiol. January 1, 2012; 302 (1): C67-76.


Functional interaction between CFTR and the sodium-phosphate co-transport type 2a in Xenopus laevis oocytes., Bakouh N., PLoS One. January 1, 2012; 7 (4): e34879.                


Sildenafil acts as potentiator and corrector of CFTR but might be not suitable for the treatment of CF lung disease., Leier G., Cell Physiol Biochem. January 1, 2012; 29 (5-6): 775-90.


F508del-CFTR increases intracellular Ca(2+) signaling that causes enhanced calcium-dependent Cl(-) conductance in cystic fibrosis., Martins JR., Biochim Biophys Acta. November 1, 2011; 1812 (11): 1385-92.


CFTR induces extracellular acid sensing in Xenopus oocytes which activates endogenous Ca²⁺-activated Cl⁻ conductance., Kongsuphol P., Pflugers Arch. September 1, 2011; 462 (3): 479-87.


ERp29 regulates DeltaF508 and wild-type cystic fibrosis transmembrane conductance regulator (CFTR) trafficking to the plasma membrane in cystic fibrosis (CF) and non-CF epithelial cells., Suaud L., J Biol Chem. June 17, 2011; 286 (24): 21239-53.


Characterization of the L683P mutation of SLC26A9 in Xenopus oocytes., Avella M., Biochim Biophys Acta. June 1, 2011; 1810 (6): 577-83.


The location of olfactory receptors within olfactory epithelium is independent of odorant volatility and solubility., Abaffy T., BMC Res Notes. May 6, 2011; 4 137.        


Native and recombinant Slc26a3 (downregulated in adenoma, Dra) do not exhibit properties of 2Cl-/1HCO3- exchange., Alper SL., Am J Physiol Cell Physiol. February 1, 2011; 300 (2): C276-86.


Effect of Annexin A5 on CFTR: regulated traffic or scaffolding?, Faria D., Mol Membr Biol. January 1, 2011; 28 (1): 14-29.


Stimulating effect of external Myo-inositol on the expression of mutant forms of aquaporin 2., Lussier Y., J Membr Biol. July 1, 2010; 236 (2): 225-32.


Metformin treatment of diabetes mellitus increases the risk for pancreatitis in patients bearing the CFTR-mutation S573C., Kongsuphol P., Cell Physiol Biochem. January 1, 2010; 25 (4-5): 389-96.


Cystic fibrosis transmembrane conductance regulator: using differential reactivity toward channel-permeant and channel-impermeant thiol-reactive probes to test a molecular model for the pore., Alexander C., Biochemistry. October 27, 2009; 48 (42): 10078-88.                


Regulation of CFTR trafficking by its R domain., Lewarchik CM., J Biol Chem. October 17, 2008; 283 (42): 28401-12.


Imaging CFTR in its native environment., Schillers H., Pflugers Arch. April 1, 2008; 456 (1): 163-77.


The role of SGK and CFTR in acute adaptation to seawater in Fundulus heteroclitus., Shaw JR., Cell Physiol Biochem. January 1, 2008; 22 (1-4): 69-78.


Abnormal regulatory interactions of I148T-CFTR and the epithelial Na+ channel in Xenopus oocytes., Suaud L., Am J Physiol Cell Physiol. January 1, 2007; 292 (1): C603-11.


Regulation of human cystic fibrosis transmembrane conductance regulator (CFTR) by serum- and glucocorticoid-inducible kinase (SGK1)., Sato JD., Cell Physiol Biochem. January 1, 2007; 20 (1-4): 91-8.


2,3-butanedione monoxime affects cystic fibrosis transmembrane conductance regulator channel function through phosphorylation-dependent and phosphorylation-independent mechanisms: the role of bilayer material properties., Artigas P., Mol Pharmacol. December 1, 2006; 70 (6): 2015-26.


Anion exchangers in flux: functional differences between human and mouse SLC26A6 polypeptides., Alper SL., Novartis Found Symp. January 1, 2006; 273 107-19; discussion 119-25, 261-4.


The CLIC1 chloride channel is regulated by the cystic fibrosis transmembrane conductance regulator when expressed in Xenopus oocytes., Edwards JC., J Membr Biol. January 1, 2006; 213 (1): 39-46.


Interplay between cystic fibrosis transmembrane regulator and gap junction channels made of connexins 45, 40, 32 and 50 expressed in oocytes., Kotsias BA., J Membr Biol. January 1, 2006; 214 (1): 1-8.


An energy-dependent maturation step is required for release of the cystic fibrosis transmembrane conductance regulator from early endoplasmic reticulum biosynthetic machinery., Oberdorf J., J Biol Chem. November 18, 2005; 280 (46): 38193-202.


Synergic action of insulin and genistein on Na+/K+/2Cl- cotransporter in renal epithelium., Ueda-Nishimura T., Biochem Biophys Res Commun. July 15, 2005; 332 (4): 1042-52.


CFTR fails to inhibit the epithelial sodium channel ENaC expressed in Xenopus laevis oocytes., Nagel G., J Physiol. May 1, 2005; 564 (Pt 3): 671-82.


Preferential phosphorylation of R-domain Serine 768 dampens activation of CFTR channels by PKA., Csanády L., J Gen Physiol. February 1, 2005; 125 (2): 171-86.                  


Potentiation of effect of PKA stimulation of Xenopus CFTR by activation of PKC: role of NBD2., Chen Y., Am J Physiol Cell Physiol. November 1, 2004; 287 (5): C1436-44.


Mechanism of activation of Xenopus CFTR by stimulation of PKC., Chen Y., Am J Physiol Cell Physiol. November 1, 2004; 287 (5): C1256-63.

???pagination.result.page??? 1 2 3 ???pagination.result.next???