Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1946) Expression Attributions Wiki
XB-ANAT-487

Papers associated with neuron (and neurog2)

Limit to papers also referencing gene:
Show all neuron papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Xenopus Sox11 Partner Proteins and Functional Domains in Neurogenesis., Singleton KS., Genes (Basel). February 15, 2024; 15 (2):         


Cellular response to spinal cord injury in regenerative and non-regenerative stages in Xenopus laevis., Edwards-Faret G., Neural Dev. February 2, 2021; 16 (1): 2.                              


Prdm12 Directs Nociceptive Sensory Neuron Development by Regulating the Expression of the NGF Receptor TrkA., Desiderio S., Cell Rep. March 26, 2019; 26 (13): 3522-3536.e5.                  


C8orf46 homolog encodes a novel protein Vexin that is required for neurogenesis in Xenopus laevis., Moore KB., Dev Biol. May 1, 2018; 437 (1): 27-40.                  


KDM3A-mediated demethylation of histone H3 lysine 9 facilitates the chromatin binding of Neurog2 during neurogenesis., Lin H., Development. October 15, 2017; 144 (20): 3674-3685.                          


Prdm13 forms a feedback loop with Ptf1a and is required for glycinergic amacrine cell genesis in the Xenopus Retina., Bessodes N., Neural Dev. September 1, 2017; 12 (1): 16.                


JAK-STAT pathway activation in response to spinal cord injury in regenerative and non-regenerative stages of Xenopus laevis., Tapia VS., Regeneration (Oxf). February 1, 2017; 4 (1): 21-35.                          


The positive transcriptional elongation factor (P-TEFb) is required for neural crest specification., Hatch VL., Dev Biol. August 15, 2016; 416 (2): 361-72.                                    


Multi-site phosphorylation regulates NeuroD4 activity during primary neurogenesis: a conserved mechanism amongst proneural proteins., Hardwick LJ., Neural Dev. June 18, 2015; 10 15.                  


Sox21 regulates the progression of neuronal differentiation in a dose-dependent manner., Whittington N., Dev Biol. January 15, 2015; 397 (2): 237-47.              


Phosphorylation in intrinsically disordered regions regulates the activity of Neurogenin2., McDowell GS., BMC Biochem. November 6, 2014; 15 24.        


The ETS transcription factor Etv1 mediates FGF signaling to initiate proneural gene expression during Xenopus laevis retinal development., Willardsen M., Mech Dev. February 1, 2014; 131 57-67.      


Regulation of neurogenesis by Fgf8a requires Cdc42 signaling and a novel Cdc42 effector protein., Hulstrand AM., Dev Biol. October 15, 2013; 382 (2): 385-99.                              


ERF and ETV3L are retinoic acid-inducible repressors required for primary neurogenesis., Janesick A., Development. August 1, 2013; 140 (15): 3095-106.                                                              


Complex regulation controls Neurogenin3 proteolysis., Roark R., Biol Open. December 15, 2012; 1 (12): 1264-72.              


Post-translational modification of Ngn2 differentially affects transcription of distinct targets to regulate the balance between progenitor maintenance and differentiation., Hindley C., Development. May 1, 2012; 139 (10): 1718-23.      


Xaml1/Runx1 is required for the specification of Rohon-Beard sensory neurons in Xenopus., Park BY., Dev Biol. February 1, 2012; 362 (1): 65-75.                


Identification and characterization of ADAM41, a novel ADAM metalloproteinase in Xenopus., Xu G., Int J Dev Biol. January 1, 2012; 56 (5): 333-9.          


The homeobox leucine zipper gene Homez plays a role in Xenopus laevis neurogenesis., Ghimouz R., Biochem Biophys Res Commun. November 11, 2011; 415 (1): 11-6.            


Cell cycle-regulated multi-site phosphorylation of Neurogenin 2 coordinates cell cycling with differentiation during neurogenesis., Ali F., Development. October 1, 2011; 138 (19): 4267-77.      


hnRNP K post-transcriptionally co-regulates multiple cytoskeletal genes needed for axonogenesis., Liu Y., Development. July 1, 2011; 138 (14): 3079-90.                


The response of early neural genes to FGF signaling or inhibition of BMP indicate the absence of a conserved neural induction module., Rogers CD., BMC Dev Biol. January 26, 2011; 11 74.        


Xenopus Meis3 protein lies at a nexus downstream to Zic1 and Pax3 proteins, regulating multiple cell-fates during early nervous system development., Gutkovich YE., Dev Biol. February 1, 2010; 338 (1): 50-62.                  


The apicobasal polarity kinase aPKC functions as a nuclear determinant and regulates cell proliferation and fate during Xenopus primary neurogenesis., Sabherwal N., Development. August 1, 2009; 136 (16): 2767-77.                


Xenopus BTBD6 and its Drosophila homologue lute are required for neuronal development., Bury FJ., Dev Dyn. November 1, 2008; 237 (11): 3352-60.              


Sponge genes provide new insight into the evolutionary origin of the neurogenic circuit., Richards GS., Curr Biol. August 5, 2008; 18 (15): 1156-61.      


Xenopus zinc finger transcription factor IA1 (Insm1) expression marks anteroventral noradrenergic neuron progenitors in Xenopus embryos., Parlier D., Dev Dyn. August 1, 2008; 237 (8): 2147-57.          


Ptf1a triggers GABAergic neuronal cell fates in the retina., Dullin JP., BMC Dev Biol. May 31, 2007; 7 110.              


The E3 ubiquitin ligase skp2 regulates neural differentiation independent from the cell cycle., Boix-Perales H., Neural Dev. March 15, 2007; 2 27.                      


Expression and regulation of Xenopus CRMP-4 in the developing nervous system., Souopgui J., Int J Dev Biol. January 1, 2007; 51 (4): 339-43.        


Characterization and function of the bHLH-O protein XHes2: insight into the mechanisms controlling retinal cell fate decision., Sölter M., Development. October 1, 2006; 133 (20): 4097-108.                


Role of X-Delta-2 in the early neural development of Xenopus laevis., Peres JN., Dev Dyn. March 1, 2006; 235 (3): 802-10.                                              


Identification of shared transcriptional targets for the proneural bHLH factors Xath5 and XNeuroD., Logan MA., Dev Biol. September 15, 2005; 285 (2): 570-83.          


A mutant form of MeCP2 protein associated with human Rett syndrome cannot be displaced from methylated DNA by notch in Xenopus embryos., Stancheva I., Mol Cell. August 1, 2003; 12 (2): 425-35.                          


Hypobranchial placodes in Xenopus laevis give rise to hypobranchial ganglia, a novel type of cranial ganglia., Schlosser G., Cell Tissue Res. April 1, 2003; 312 (1): 21-9.


Xath5 regulates neurogenesis in the Xenopus olfactory placode., Burns CJ., Dev Dyn. December 1, 2002; 225 (4): 536-43.        


Xiro homeoproteins coordinate cell cycle exit and primary neuron formation by upregulating neuronal-fate repressors and downregulating the cell-cycle inhibitor XGadd45-gamma., de la Calle-Mustienes E., Mech Dev. November 1, 2002; 119 (1): 69-80.              


XETOR regulates the size of the proneural domain during primary neurogenesis in Xenopus laevis., Cao Y., Mech Dev. November 1, 2002; 119 (1): 35-44.                      


Distinct patterns of downstream target activation are specified by the helix-loop-helix domain of proneural basic helix-loop-helix transcription factors., Talikka M., Dev Biol. July 1, 2002; 247 (1): 137-48.          


The secreted glycoprotein Noelin-1 promotes neurogenesis in Xenopus., Moreno TA., Dev Biol. December 15, 2001; 240 (2): 340-60.                  


The homeodomain-containing gene Xdbx inhibits neuronal differentiation in the developing embryo., Gershon AA., Development. July 1, 2000; 127 (13): 2945-54.                  


X-ngnr-1 and Xath3 promote ectopic expression of sensory neuron markers in the neurula ectoderm and have distinct inducing properties in the retina., Perron M., Proc Natl Acad Sci U S A. December 21, 1999; 96 (26): 14996-5001.          


Functional association of retinoic acid and hedgehog signaling in Xenopus primary neurogenesis., Franco PG., Development. October 1, 1999; 126 (19): 4257-65.          


Math5 encodes a murine basic helix-loop-helix transcription factor expressed during early stages of retinal neurogenesis., Brown NL., Development. December 1, 1998; 125 (23): 4821-33.    


XCoe2, a transcription factor of the Col/Olf-1/EBF family involved in the specification of primary neurons in Xenopus., Dubois L., Curr Biol. February 12, 1998; 8 (4): 199-209.              


Xenopus Zic-related-1 and Sox-2, two factors induced by chordin, have distinct activities in the initiation of neural induction., Mizuseki K., Development. February 1, 1998; 125 (4): 579-87.              


Mash1 activates a cascade of bHLH regulators in olfactory neuron progenitors., Cau E., Development. April 1, 1997; 124 (8): 1611-21.

???pagination.result.page??? 1