Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (2045) Expression Attributions Wiki
XB-ANAT-491

Papers associated with limb (and krt12.4)

Limit to papers also referencing gene:
Show all limb papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Paracrine regulation of neural crest EMT by placodal MMP28., Gouignard N., PLoS Biol. August 1, 2023; 21 (8): e3002261.                                      


Membrane potential drives the exit from pluripotency and cell fate commitment via calcium and mTOR., Sempou E., Nat Commun. November 5, 2022; 13 (1): 6681.                                            


Maternal Wnt11b regulates cortical rotation during Xenopus axis formation: analysis of maternal-effect wnt11b mutants., Houston DW., Development. September 1, 2022; 149 (17):                                   


Molecular mechanisms of hearing loss in Nager syndrome., Maharana SK., Dev Biol. August 1, 2021; 476 200-208.            


Epithelial-Mesenchymal Transition Promotes the Differentiation Potential of Xenopus tropicalis Immature Sertoli Cells., Nguyen TMX., Stem Cells Int. May 5, 2019; 2019 8387478.                                            


A transition from SoxB1 to SoxE transcription factors is essential for progression from pluripotent blastula cells to neural crest cells., Buitrago-Delgado E., Dev Biol. December 15, 2018; 444 (2): 50-61.                


Retinoic acid-induced expression of Hnf1b and Fzd4 is required for pancreas development in Xenopus laevis., Gere-Becker MB., Development. June 8, 2018; 145 (12):                                   


Reactivation of larval keratin gene (krt62.L) in blastema epithelium during Xenopus froglet limb regeneration., Satoh A., Dev Biol. December 15, 2017; 432 (2): 265-272.            


Distinct intracellular Ca2+ dynamics regulate apical constriction and differentially contribute to neural tube closure., Suzuki M., Development. April 1, 2017; 144 (7): 1307-1316.                            


Sf3b4-depleted Xenopus embryos: A model to study the pathogenesis of craniofacial defects in Nager syndrome., Devotta A., Dev Biol. July 15, 2016; 415 (2): 371-382.                      


Kcnip1 a Ca²⁺-dependent transcriptional repressor regulates the size of the neural plate in Xenopus., Néant I., Biochim Biophys Acta. September 1, 2015; 1853 (9): 2077-85.  


Notum is required for neural and head induction via Wnt deacylation, oxidation, and inactivation., Zhang X., Dev Cell. March 23, 2015; 32 (6): 719-30.                                  


Proteomic analysis of fibroblastema formation in regenerating hind limbs of Xenopus laevis froglets and comparison to axolotl., Rao N., BMC Dev Biol. July 25, 2014; 14 32.                        


Purinergic receptor-induced Ca2+ signaling in the neuroepithelium of the vomeronasal organ of larval Xenopus laevis., Dittrich K., Purinergic Signal. January 1, 2014; 10 (2): 327-36.          


Geminin cooperates with Polycomb to restrain multi-lineage commitment in the early embryo., Lim JW., Development. January 1, 2011; 138 (1): 33-44.                    


The function of heterodimeric AP-1 comprised of c-Jun and c-Fos in activin mediated Spemann organizer gene expression., Lee SY., PLoS One. January 1, 2011; 6 (7): e21796.              


Characterization of a novel type I keratin gene and generation of transgenic lines with fluorescent reporter genes driven by its promoter/enhancer in Xenopus laevis., Suzuki KT., Dev Dyn. December 1, 2010; 239 (12): 3172-81.                  


The posteriorizing gene Gbx2 is a direct target of Wnt signalling and the earliest factor in neural crest induction., Li B., Development. October 1, 2009; 136 (19): 3267-78.            


Evi1 is specifically expressed in the distal tubule and duct of the Xenopus pronephros and plays a role in its formation., Van Campenhout C., Dev Biol. June 1, 2006; 294 (1): 203-19.                


A novel Xenopus laevis larval keratin gene, xlk2: its gene structure and expression during regeneration and metamorphosis of limb and tail., Tazawa I., Biochim Biophys Acta. May 1, 2006; 1759 (5): 216-24.          


Mxi1 is essential for neurogenesis in Xenopus and acts by bridging the pan-neural and proneural genes., Klisch TJ., Dev Biol. April 15, 2006; 292 (2): 470-85.                


Tsukushi controls ectodermal patterning and neural crest specification in Xenopus by direct regulation of BMP4 and X-delta-1 activity., Kuriyama S., Development. January 1, 2006; 133 (1): 75-88.            


Six1 promotes a placodal fate within the lateral neurogenic ectoderm by functioning as both a transcriptional activator and repressor., Brugmann SA., Development. December 1, 2004; 131 (23): 5871-81.                    


Regulation and function of Dlx3 in vertebrate development., Beanan MJ., Dev Dyn. August 1, 2000; 218 (4): 545-53.      


Differential expression of Xenopus ribosomal protein gene XlrpS1c., Scholnick J., Biochim Biophys Acta. October 9, 1997; 1354 (1): 72-82.                      


[Induction of cell differentiation and programmed cell death in amphibian metamorphosis]., Nishikawa A., Hum Cell. September 1, 1997; 10 (3): 167-74.


Spatial, temporal, and hormonal regulation of epidermal keratin expression during development of the frog, Xenopus laevis., Nishikawa A., Dev Biol. May 1, 1992; 151 (1): 145-53.                


An epithelium-type cytoskeleton in a glial cell: astrocytes of amphibian optic nerves contain cytokeratin filaments and are connected by desmosomes., Rungger-Brändle E., J Cell Biol. August 1, 1989; 109 (2): 705-16.              


Cytokeratin filaments and desmosomes in the epithelioid cells of the perineurial and arachnoidal sheaths of some vertebrate species., Achtstätter T., Differentiation. May 1, 1989; 40 (2): 129-49.                        


Expression of intermediate filament proteins during development of Xenopus laevis. I. cDNA clones encoding different forms of vimentin., Herrmann H., Development. February 1, 1989; 105 (2): 279-98.                      


Polar asymmetry in the organization of the cortical cytokeratin system of Xenopus laevis oocytes and embryos., Klymkowsky MW., Development. July 1, 1987; 100 (3): 543-57.              

???pagination.result.page??? 1