Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3316) Expression Attributions Wiki
XB-ANAT-492

Papers associated with surface structure (and pgla)

Limit to papers also referencing gene:
Show all surface structure papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Beneficial actions of the [A14K] analog of the frog skin peptide PGLa-AM1 in mice with obesity and degenerative diabetes: A mechanistic study., Musale V., Peptides. February 1, 2021; 136 170472.


Frog Skin Innate Immune Defences: Sensing and Surviving Pathogens., Varga JFA., Front Immunol. September 12, 2018; 9 3128.  


Peptidomic analysis of skin secretions of the Mexican burrowing toad Rhinophrynus dorsalis (Rhinophrynidae): Insight into the origin of host-defense peptides within the Pipidae and characterization of a proline-arginine-rich peptide., Conlon JM., Peptides. November 1, 2017; 97 22-28.


Actions of PGLa-AM1 and its [A14K] and [A20K] analogues and their therapeutic potential as anti-diabetic agents., Owolabi BO., Biochimie. July 1, 2017; 138 1-12.


2H-NMR and MD Simulations Reveal Membrane-Bound Conformation of Magainin 2 and Its Synergy with PGLa., Strandberg E., Biophys J. November 15, 2016; 111 (10): 2149-2161.


Host-defense and trefoil factor family peptides in skin secretions of the Mawa clawed frog Xenopus boumbaensis (Pipidae)., Conlon JM., Peptides. October 1, 2015; 72 44-9.


Influence of hydrophobic residues on the activity of the antimicrobial peptide magainin 2 and its synergy with PGLa., Strandberg E., J Pept Sci. May 1, 2015; 21 (5): 436-45.


Evidence from peptidomic analysis of skin secretions that allopatric populations of Xenopus gilli (Anura:Pipidae) constitute distinct lineages., Conlon JM., Peptides. January 1, 2015; 63 118-25.


Host-defense peptides from skin secretions of Fraser's clawed frog Xenopus fraseri (Pipidae): Further insight into the evolutionary history of the Xenopodinae., Conlon JM., Comp Biochem Physiol Part D Genomics Proteomics. December 1, 2014; 12 45-52.


Antimicrobial and immunomodulatory properties of PGLa-AM1, CPF-AM1, and magainin-AM1: Potent activity against oral pathogens., McLean DT., Regul Pept. November 1, 2014; .


Host-defense peptides from skin secretions of the octoploid frogs Xenopus vestitus and Xenopus wittei (Pipidae): insights into evolutionary relationships., Mechkarska M., Comp Biochem Physiol Part D Genomics Proteomics. September 1, 2014; 11 20-8.


[Optimization of coding sequences and expression of antimicrobial peptide magainin II in Escherichia coli and Pichia pastoris]., Chen Y., Sheng Wu Gong Cheng Xue Bao. April 1, 2014; 30 (4): 615-24.


Low structural variation in the host-defense peptide repertoire of the dwarf clawed frog Hymenochirus boettgeri (Pipidae)., Matthijs S., PLoS One. January 17, 2014; 9 (1): e86339.              


Host-defense peptides with therapeutic potential from skin secretions of frogs from the family pipidae., Conlon JM., Pharmaceuticals (Basel). January 15, 2014; 7 (1): 58-77.          


Peptidomic analysis of skin secretions provides insight into the taxonomic status of the African clawed frogs Xenopus victorianus and Xenopus laevis sudanensis (Pipidae)., King JD., Comp Biochem Physiol Part D Genomics Proteomics. September 1, 2013; 8 (3): 250-4.


A comparison of host-defense peptides in skin secretions of female Xenopus laevis × Xenopus borealis and X. borealis × X. laevis F1 hybrids., Mechkarska M., Peptides. July 1, 2013; 45 1-8.


Synergistic insertion of antimicrobial magainin-family peptides in membranes depends on the lipid spontaneous curvature., Strandberg E., Biophys J. March 19, 2013; 104 (6): L9-11.


Caerulein precursor fragment (CPF) peptides from the skin secretions of Xenopus laevis and Silurana epitropicalis are potent insulin-releasing agents., Srinivasan D., Biochimie. February 1, 2013; 95 (2): 429-35.


Frog skin peptides (tigerinin-1R, magainin-AM1, -AM2, CPF-AM1, and PGla-AM1) stimulate secretion of glucagon-like peptide 1 (GLP-1) by GLUTag cells., Ojo OO., Biochem Biophys Res Commun. February 1, 2013; 431 (1): 14-8.    


Hybridization between the African clawed frogs Xenopus laevis and Xenopus muelleri (Pipidae) increases the multiplicity of antimicrobial peptides in skin secretions of female offspring., Mechkarska M., Comp Biochem Physiol Part D Genomics Proteomics. September 1, 2012; 7 (3): 285-91.


Host-defense peptides in skin secretions of the tetraploid frog Silurana epitropicalis with potent activity against methicillin-resistant Staphylococcus aureus (MRSA)., Conlon JM., Peptides. September 1, 2012; 37 (1): 113-9.


Host-defense peptides in skin secretions of African clawed frogs (Xenopodinae, Pipidae)., Conlon JM., Gen Comp Endocrinol. May 1, 2012; 176 (3): 513-8.    


Host-defense peptides from skin secretions of the tetraploid frogs Xenopus petersii and Xenopus pygmaeus, and the octoploid frog Xenopus lenduensis (Pipidae)., King JD., Peptides. January 1, 2012; 33 (1): 35-43.


Isolation and characterisation of a new antimicrobial peptide from the skin of Xenopus laevis., Hou F., Int J Antimicrob Agents. December 1, 2011; 38 (6): 510-5.


Genome duplications within the Xenopodinae do not increase the multiplicity of antimicrobial peptides in Silurana paratropicalis and Xenopus andrei skin secretions., Mechkarska M., Comp Biochem Physiol Part D Genomics Proteomics. June 1, 2011; 6 (2): 206-12.


Antimicrobial peptides with therapeutic potential from skin secretions of the Marsabit clawed frog Xenopus borealis (Pipidae)., Mechkarska M., Comp Biochem Physiol C Toxicol Pharmacol. November 1, 2010; 152 (4): 467-72.


Orthologs of magainin, PGLa, procaerulein-derived, and proxenopsin-derived peptides from skin secretions of the octoploid frog Xenopus amieti (Pipidae)., Conlon JM., Peptides. June 1, 2010; 31 (6): 989-94.


Synergistic transmembrane insertion of the heterodimeric PGLa/magainin 2 complex studied by solid-state NMR., Strandberg E., Biochim Biophys Acta. August 1, 2009; 1788 (8): 1667-79.


Biological activity and structural aspects of PGLa interaction with membrane mimetic systems., Lohner K., Biochim Biophys Acta. August 1, 2009; 1788 (8): 1656-66.


Molecular features of thyroid hormone-regulated skin remodeling in Xenopus laevis during metamorphosis., Suzuki K., Dev Growth Differ. May 1, 2009; 51 (4): 411-27.                


Interaction of a magainin-PGLa hybrid peptide with membranes: insight into the mechanism of synergism., Nishida M., Biochemistry. December 11, 2007; 46 (49): 14284-90.


Synergistic transmembrane alignment of the antimicrobial heterodimer PGLa/magainin., Tremouilhac P., J Biol Chem. October 27, 2006; 281 (43): 32089-94.


Candida glabrata is unusual with respect to its resistance to cationic antifungal proteins., Helmerhorst EJ., Yeast. July 15, 2005; 22 (9): 705-14.


Lipid discrimination in phospholipid monolayers by the antimicrobial frog skin peptide PGLa. A synchrotron X-ray grazing incidence and reflectivity study., Konovalov O., Eur Biophys J. October 1, 2002; 31 (6): 428-37.


Heterodimer formation between the antimicrobial peptides magainin 2 and PGLa in lipid bilayers: a cross-linking study., Hara T., Biochemistry. October 16, 2001; 40 (41): 12395-9.


Mechanism of synergism between antimicrobial peptides magainin 2 and PGLa., Matsuzaki K., Biochemistry. October 27, 1998; 37 (43): 15144-53.


Structural aspects of the interaction of peptidyl-glycylleucine-carboxyamide, a highly potent antimicrobial peptide from frog skin, with lipids., Latal A., Eur J Biochem. September 15, 1997; 248 (3): 938-46.


Functional synergism of the magainins PGLa and magainin-2 in Escherichia coli, tumor cells and liposomes., Westerhoff HV., Eur J Biochem. March 1, 1995; 228 (2): 257-64.


Isolation and properties of a multicatalytic proteinase complex from Xenopus laevis skin secretion., Camarão GC., Braz J Med Biol Res. December 1, 1994; 27 (12): 2863-7.


A Paneth cell analogue in Xenopus small intestine expresses antimicrobial peptide genes: conservation of an intestinal host-defense system., Reilly DS., J Histochem Cytochem. June 1, 1994; 42 (6): 697-704.  


Expression of magainin antimicrobial peptide genes in the developing granular glands of Xenopus skin and induction by thyroid hormone., Reilly DS., Dev Biol. March 1, 1994; 162 (1): 123-33.          


Electric potentiation, cooperativity, and synergism of magainin peptides in protein-free liposomes., Vaz Gomes A., Biochemistry. May 25, 1993; 32 (20): 5365-72.


A novel peptide-producing cell in Xenopus: multinucleated gastric mucosal cell strikingly similar to the granular gland of the skin., Moore KS., J Histochem Cytochem. March 1, 1992; 40 (3): 367-78.


Antimicrobial peptides in the stomach of Xenopus laevis., Moore KS., J Biol Chem. October 15, 1991; 266 (29): 19851-7.              


Raman spectroscopy of synthetic antimicrobial frog peptides magainin 2a and PGLa., Williams RW., Biochemistry. May 8, 1990; 29 (18): 4490-6.


Magainins and the disruption of membrane-linked free-energy transduction., Westerhoff HV., Proc Natl Acad Sci U S A. September 1, 1989; 86 (17): 6597-601.


Antimicrobial properties of peptides from Xenopus granular gland secretions., Soravia E., FEBS Lett. February 15, 1988; 228 (2): 337-40.


Biogenic amines and active peptides in the skin of fifty-two African amphibian species other than bufonids., Roseghini M., Comp Biochem Physiol C Comp Pharmacol Toxicol. January 1, 1988; 91 (2): 281-6.


Skin peptides in Xenopus laevis: morphological requirements for precursor processing in developing and regenerating granular skin glands., Flucher BE., J Cell Biol. December 1, 1986; 103 (6 Pt 1): 2299-309.                


Novel peptide fragments originating from PGLa and the caerulein and xenopsin precursors from Xenopus laevis., Gibson BW., J Biol Chem. April 25, 1986; 261 (12): 5341-9.

???pagination.result.page??? 1 2 ???pagination.result.next???