Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Anatomy Item Literature (3686) Expression Attributions Wiki
XB-ANAT-50

Papers associated with mesoderm

Limit to papers also referencing gene:
Results 1 - 50 of 3686 results

Page(s): 1 2 3 4 5 6 7 8 9 10 11 Next

Sort Newest To Oldest Sort Oldest To Newest

Natural size variation among embryos leads to the corresponding scaling in gene expression., Leibovich A., Dev Biol. June 15, 2020; 462 (2): 165-179.                    


Chromatin accessibility and histone acetylation in the regulation of competence in early development., Esmaeili M., Dev Biol. June 1, 2020; 462 (1): 20-35.


Tbx2 mediates dorsal patterning and germ layer suppression through inhibition of BMP/GDF and Activin/Nodal signaling., Reich S., BMC Mol Cell Biol. May 28, 2020; 21 (1): 39.              


Rspo2 antagonizes FGF signaling during vertebrate mesoderm formation and patterning., Reis AH., Development. May 27, 2020; 147 (10):


Lhx2/9 and Etv1 Transcription Factors have Complementary roles in Regulating the Expression of Guidance Genes slit1 and sema3a., Yang JJ., Neuroscience. May 10, 2020; 434 66-82.


Wip1 regulates Smad4 phosphorylation and inhibits TGF-β signaling., Park DS., EMBO Rep. May 6, 2020; 21 (5): e48693.


A comparative analysis of fibroblast growth factor receptor signalling during Xenopus development., Brunsdon H., Biol Cell. May 1, 2020; 112 (5): 127-139.                


A Generalizable Optogenetic Strategy to Regulate Receptor Tyrosine Kinases during Vertebrate Embryonic Development., Krishnamurthy VV., J Mol Biol. May 1, 2020; 432 (10): 3149-3158.


Heparan sulfate proteoglycans regulate BMP signalling during neural crest induction., Pegge J., Dev Biol. April 15, 2020; 460 (2): 108-114.        


Mechanical Stress Regulates Epithelial Tissue Integrity and Stiffness through the FGFR/Erk2 Signaling Pathway during Embryogenesis., Kinoshita N., Cell Rep. March 17, 2020; 30 (11): 3875-3888.e3.                


The regulatory proteins DSCR6 and Ezh2 oppositely regulate Stat3 transcriptional activity in mesoderm patterning during Xenopus development., Loreti M., J Biol Chem. February 28, 2020; 295 (9): 2724-2735.                


Role of TrkA signaling during tadpole tail regeneration and early embryonic development in Xenopus laevis., Iimura A., Genes Cells. February 1, 2020; 25 (2): 86-99.                


Differential expression of foxo genes during embryonic development and in adult tissues of Xenopus tropicalis., Zheng L., Gene Expr Patterns. January 1, 2020; 35 119091.              


The roles and controls of GATA factors in blood and cardiac development., Dobrzycki T., IUBMB Life. January 1, 2020; 72 (1): 39-44.


Mesoderm and endoderm internalization in the Xenopus gastrula., Winklbauer R., Curr Top Dev Biol. January 1, 2020; 136 243-270.


An in vivo brain-bacteria interface: the developing brain as a key regulator of innate immunity., Herrera-Rincon C., NPJ Regen Med. January 1, 2020; 5 2.                        


Tunicate gastrulation., Winkley KM., Curr Top Dev Biol. January 1, 2020; 136 219-242.


Early Xenopus gene regulatory programs, chromatin states, and the role of maternal transcription factors., Paraiso KD., Curr Top Dev Biol. January 1, 2020; 139 35-60.


Cell type-specific transcriptome analysis unveils secreted signaling molecule genes expressed in apical epithelial cap during appendage regeneration., Okumura A., Dev Growth Differ. December 1, 2019; 61 (9): 447-456.                


Cdc2-like kinase 2 (Clk2) promotes early neural development in Xenopus embryos., Virgirinia RP., Dev Growth Differ. August 1, 2019; 61 (6): 365-377.                              


Gene Regulatory Networks Governing the Generation and Regeneration of Blood., Ciau-Uitz A., J Comput Biol. July 1, 2019; 26 (7): 719-725.


Ventx1.1 competes with a transcriptional activator Xcad2 to regulate negatively its own expression., Kumar S, Kumar S., BMB Rep. June 1, 2019; 52 (6): 403-408.        


The Expression of Key Guidance Genes at a Forebrain Axon Turning Point Is Maintained by Distinct Fgfr Isoforms but a Common Downstream Signal Transduction Mechanism., Yang JJ., eNeuro. March 1, 2019; 6 (2):                   


Nucleotide receptor P2RY4 is required for head formation via induction and maintenance of head organizer in Xenopus laevis., Harata A., Dev Growth Differ. February 1, 2019; 61 (2): 186-197.                      


Lysine demethylase 3a in craniofacial and neural development during Xenopus embryogenesis., Lee HK., Int J Mol Med. February 1, 2019; 43 (2): 1105-1113.


Comparisons of SOCS mRNA and protein levels in Xenopus provide insights into optic nerve regenerative success., Priscilla R., Brain Res. January 1, 2019; 1704 150-160.          


Leukemia inhibitory factor signaling in Xenopus embryo: Insights from gain of function analysis and dominant negative mutant of the receptor., Jalvy S., Dev Biol. January 1, 2019; 447 (2): 200-213.                                  


Xenopus slc7a5 is essential for notochord function and eye development., Katada T., Mech Dev. January 1, 2019; 155 48-59.                


ENSA and ARPP19 differentially control cell cycle progression and development., Hached K., J Cell Biol. January 1, 2019; 218 (2): 541-558.                


The Wnt inhibitor Dkk1 is required for maintaining the normal cardiac differentiation program in Xenopus laevis., Guo Y., Dev Biol. January 1, 2019; 449 (1): 1-13.                                  


A unique role of thyroid hormone receptor β in regulating notochord resorption during Xenopus metamorphosis., Nakajima K., Gen Comp Endocrinol. January 1, 2019; 277 66-72.            


The role of fibroblast growth factor signalling in Echinococcus multilocularis development and host-parasite interaction., Förster S., PLoS Negl Trop Dis. January 1, 2019; 13 (3): e0006959.              


Etv6 activates vegfa expression through positive and negative transcriptional regulatory networks in Xenopus embryos., Li L., Nat Commun. January 1, 2019; 10 (1): 1083.                                          


Dynamin Binding Protein Is Required for Xenopus laevis Kidney Development., DeLay BD., Front Physiol. January 1, 2019; 10 143.                        


The Frog Xenopus as a Model to Study Joubert Syndrome: The Case of a Human Patient With Compound Heterozygous Variants in PIBF1., Ott T., Front Physiol. January 1, 2019; 10 134.                


Liver Specification in the Absence of Cardiac Differentiation Revealed by Differential Sensitivity to Wnt/β Catenin Pathway Activation., Haworth K., Front Physiol. January 1, 2019; 10 155.              


PCP-dependent transcellular regulation of actomyosin oscillation facilitates convergent extension of vertebrate tissue., Shindo A., Dev Biol. January 1, 2019; 446 (2): 159-167.        


What are the roles of retinoids, other morphogens, and Hox genes in setting up the vertebrate body axis?, Durston AJ., Genesis. January 1, 2019; 57 (7-8): e23296.            


A dual function of FGF signaling in Xenopus left-right axis formation., Schneider I., Development. January 1, 2019; 146 (9):                               


Isolation of nanobodies against Xenopus embryonic antigens using immune and non-immune phage display libraries., Itoh K., PLoS One. January 1, 2019; 14 (5): e0216083.          


A Critical E-box in Barhl1 3'' Enhancer Is Essential for Auditory Hair Cell Differentiation., Hou K., Cells. January 1, 2019; 8 (5):               


Cdc42 Effector Protein 3 Interacts With Cdc42 in Regulating Xenopus Somite Segmentation., Kho M., Front Physiol. January 1, 2019; 10 542.          


Barhl2 maintains T cell factors as repressors and thereby switches off the Wnt/β-Catenin response driving Spemann organizer formation., Sena E., Development. January 1, 2019; 146 (10):                                             


ISM1 regulates NODAL signaling and asymmetric organ morphogenesis during development., Osório L., J Cell Biol. January 1, 2019; 218 (7): 2388-2402.                  


Mechanical strain, novel genes and evolutionary insights: news from the frog left-right organizer., Blum M., Curr Opin Genet Dev. January 1, 2019; 56 8-14.      


Comparative analysis of p4ha1 and p4ha2 expression during Xenopus laevis development., Martini D., Int J Dev Biol. January 1, 2019; 63 (6-7): 311-316.          


Integration of Wnt and FGF signaling in the Xenopus gastrula at TCF and Ets binding sites shows the importance of short-range repression by TCF in patterning the marginal zone., Kjolby RAS., Development. January 1, 2019; 146 (15):                           


Spatial analysis of RECK, MT1-MMP, and TIMP-2 proteins during early Xenopus laevis development., Willson JA., Gene Expr Patterns. January 1, 2019; 34 119066.              


Lineage tracing of sclerotome cells in amphibian reveals that multipotent somitic cells originate from lateral somitic frontier., Della Gaspera B., Dev Biol. January 1, 2019; 453 (1): 11-18.        


A new transgenic reporter line reveals Wnt-dependent Snai2 re-expression and cranial neural crest differentiation in Xenopus., Li J., Sci Rep. January 1, 2019; 9 (1): 11191.              

Page(s): 1 2 3 4 5 6 7 8 9 10 11 Next

Xenbase: The Xenopus Model Organism Knowledgebase.
Version: 4.14.0
Major funding for Xenbase is provided by grant P41 HD064556