Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (17692) Expression Attributions Wiki
XB-ANAT-504

Papers associated with tissue (and krt18.1)

Limit to papers also referencing gene:
Show all tissue papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Evolutionary origin of Hoxc13-dependent skin appendages in amphibians., Carron M., Nat Commun. March 18, 2024; 15 (1): 2328.                              


A single-cell, time-resolved profiling of Xenopus mucociliary epithelium reveals nonhierarchical model of development., Lee J., Sci Adv. April 7, 2023; 9 (14): eadd5745.                                                          


Clustered Xenopus keratin genes: A genomic, transcriptomic, and proteomic analysis., Suzuki KT., Dev Biol. June 15, 2017; 426 (2): 384-392.


Unique gene expression profile of the proliferating Xenopus tadpole tail blastema cells deciphered by RNA-sequencing analysis., Tsujioka H., PLoS One. January 1, 2015; 10 (3): e0111655.          


Characterization of a novel type I keratin gene and generation of transgenic lines with fluorescent reporter genes driven by its promoter/enhancer in Xenopus laevis., Suzuki KT., Dev Dyn. December 1, 2010; 239 (12): 3172-81.                  


Neuronatin promotes neural lineage in ESCs via Ca(2+) signaling., Lin HH., Stem Cells. November 1, 2010; 28 (11): 1950-60.              


Maternal Interferon Regulatory Factor 6 is required for the differentiation of primary superficial epithelia in Danio and Xenopus embryos., Sabel JL., Dev Biol. January 1, 2009; 325 (1): 249-62.                            


Identification of genes associated with regenerative success of Xenopus laevis hindlimbs., Pearl EJ., BMC Dev Biol. June 23, 2008; 8 66.              


Genetic screens for mutations affecting development of Xenopus tropicalis., Goda T., PLoS Genet. June 1, 2006; 2 (6): e91.                        


Voltage clamp fluorometric measurements on a type II Na+-coupled Pi cotransporter: shedding light on substrate binding order., Virkki LV., J Gen Physiol. May 1, 2006; 127 (5): 539-55.                


Macroarray-based analysis of tail regeneration in Xenopus laevis larvae., Tazaki A., Dev Dyn. August 1, 2005; 233 (4): 1394-404.                          


Microarray-based identification of VegT targets in Xenopus., Taverner NV., Mech Dev. March 1, 2005; 122 (3): 333-54.                                          


Structure-function relations of the first and fourth extracellular linkers of the type IIa Na+/Pi cotransporter: II. Substrate interaction and voltage dependency of two functionally important sites., Ehnes C., J Gen Physiol. November 1, 2004; 124 (5): 489-503.                


Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning., Gawantka V., Mech Dev. October 1, 1998; 77 (2): 95-141.                                                            


Analysis of Xwnt-4 in embryos of Xenopus laevis: a Wnt family member expressed in the brain and floor plate., McGrew LL., Development. June 1, 1992; 115 (2): 463-73.              


Tailless keratins assemble into regular intermediate filaments in vitro., Hatzfeld M., J Cell Sci. October 1, 1990; 97 ( Pt 2) 317-24.


XK endo B is preferentially expressed in several induced embryonic tissues during the development of Xenopus laevis., LaFlamme SE., Differentiation. March 1, 1990; 43 (1): 1-9.          


Differential keratin gene expression during the differentiation of the cement gland of Xenopus laevis., LaFlamme SE., Dev Biol. February 1, 1990; 137 (2): 414-8.        


Xenopus endo B is a keratin preferentially expressed in the embryonic notochord., LaFlamme SE., Genes Dev. July 1, 1988; 2 (7): 853-62.            

???pagination.result.page??? 1