Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3261) Expression Attributions Wiki
XB-ANAT-512

Papers associated with egg (and wee1)

Limit to papers also referencing gene:
Show all egg papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Increases in cyclin A/Cdk activity and in PP2A-B55 inhibition by FAM122A are key mitosis-inducing events., Lacroix B., EMBO J. March 1, 2024; 43 (6): 993-1014.                                


A cyclin-dependent kinase-mediated phosphorylation switch of disordered protein condensation., Valverde JM., Nat Commun. October 9, 2023; 14 (1): 6316.                                      


Revisiting the multisite phosphorylation that produces the M-phase supershift of key mitotic regulators., Tan T., Mol Biol Cell. October 1, 2022; 33 (12): ar115.                                                      


Bistable, Biphasic Regulation of PP2A-B55 Accounts for the Dynamics of Mitotic Substrate Phosphorylation., Kamenz J., Curr Biol. February 22, 2021; 31 (4): 794-808.e6.                              


Ongoing replication forks delay the nuclear envelope breakdown upon mitotic entry., Hashimoto Y., J Biol Chem. January 1, 2021; 296 100033.                


A robust and tunable mitotic oscillator in artificial cells., Guan Y., Elife. April 5, 2018; 7                       


Calcium signaling and meiotic exit at fertilization in Xenopus egg., Tokmakov AA., Int J Mol Sci. October 15, 2014; 15 (10): 18659-76.    


Changes in oscillatory dynamics in the cell cycle of early Xenopus laevis embryos., Tsai TY., PLoS Biol. February 1, 2014; 12 (2): e1001788.              


Mitotic trigger waves and the spatial coordination of the Xenopus cell cycle., Chang JB., Nature. August 29, 2013; 500 (7464): 603-7.                


Protein phosphatase 2A controls the order and dynamics of cell-cycle transitions., Krasinska L., Mol Cell. November 4, 2011; 44 (3): 437-50.


CENP-C recruits M18BP1 to centromeres to promote CENP-A chromatin assembly., Moree B., J Cell Biol. September 19, 2011; 194 (6): 855-71.                            


In vitro centromere and kinetochore assembly on defined chromatin templates., Guse A., Nature. August 28, 2011; 477 (7364): 354-8.      


Endoplasmic reticulum remodeling tunes IP₃-dependent Ca²+ release sensitivity., Sun L., PLoS One. January 1, 2011; 6 (11): e27928.            


Greatwall phosphorylates an inhibitor of protein phosphatase 2A that is essential for mitosis., Mochida S., Science. December 17, 2010; 330 (6011): 1670-3.


Constant regulation of both the MPF amplification loop and the Greatwall-PP2A pathway is required for metaphase II arrest and correct entry into the first embryonic cell cycle., Lorca T., J Cell Sci. July 1, 2010; 123 (Pt 13): 2281-91.              


Dissecting the M phase-specific phosphorylation of serine-proline or threonine-proline motifs., Wu CF., Mol Biol Cell. May 1, 2010; 21 (9): 1470-81.              


Internalization of plasma membrane Ca2+-ATPase during Xenopus oocyte maturation., El-Jouni W., Dev Biol. December 1, 2008; 324 (1): 99-107.        


Roles of Greatwall kinase in the regulation of cdc25 phosphatase., Zhao Y., Mol Biol Cell. April 1, 2008; 19 (4): 1317-27.                        


Mechanism for inactivation of the mitotic inhibitory kinase Wee1 at M phase., Okamoto K., Proc Natl Acad Sci U S A. March 6, 2007; 104 (10): 3753-8.


Multisite M-phase phosphorylation of Xenopus Wee1A., Kim SY., Mol Cell Biol. December 1, 2005; 25 (23): 10580-90.


Changes in regulatory phosphorylation of Cdc25C Ser287 and Wee1 Ser549 during normal cell cycle progression and checkpoint arrests., Stanford JS., Mol Biol Cell. December 1, 2005; 16 (12): 5749-60.


Drosophila Wee1 kinase regulates Cdk1 and mitotic entry during embryogenesis., Stumpff J., Curr Biol. December 14, 2004; 14 (23): 2143-8.


DNA replication checkpoint control of Wee1 stability by vertebrate Hsl7., Yamada A., J Cell Biol. December 6, 2004; 167 (5): 841-9.              


Multiple Cdk1 inhibitory kinases regulate the cell cycle during development., Leise W., Dev Biol. September 1, 2002; 249 (1): 156-73.                                        


Induction of maturation-promoting factor during Xenopus oocyte maturation uncouples Ca(2+) store depletion from store-operated Ca(2+) entry., Machaca K., J Cell Biol. January 7, 2002; 156 (1): 75-85.                


Positive regulation of Wee1 by Chk1 and 14-3-3 proteins., Lee J., Mol Biol Cell. March 1, 2001; 12 (3): 551-63.


Wee1-regulated apoptosis mediated by the crk adaptor protein in Xenopus egg extracts., Smith JJ., J Cell Biol. December 25, 2000; 151 (7): 1391-400.                


Activation of Wee1 by p42 MAPK in vitro and in cycling xenopus egg extracts., Walter SA., Mol Biol Cell. March 1, 2000; 11 (3): 887-96.


The xenopus Suc1/Cks protein promotes the phosphorylation of G(2)/M regulators., Patra D., J Biol Chem. December 24, 1999; 274 (52): 36839-42.


A maternal form of the phosphatase Cdc25A regulates early embryonic cell cycles in Xenopus laevis., Kim SH., Dev Biol. August 15, 1999; 212 (2): 381-91.            


Coupling of mitosis to the completion of S phase through Cdc34-mediated degradation of Wee1., Michael WM., Science. December 4, 1998; 282 (5395): 1886-9.


Induction of a G2-phase arrest in Xenopus egg extracts by activation of p42 mitogen-activated protein kinase., Walter SA., Mol Biol Cell. November 1, 1997; 8 (11): 2157-69.


Myt1: a membrane-associated inhibitory kinase that phosphorylates Cdc2 on both threonine-14 and tyrosine-15., Mueller PR., Science. October 6, 1995; 270 (5233): 86-90.


Two distinct mechanisms for negative regulation of the Wee1 protein kinase., Tang Z., EMBO J. September 1, 1993; 12 (9): 3427-36.

???pagination.result.page??? 1