Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Anatomy Item Literature (3252) Expression Attributions Wiki
XB-ANAT-523

Papers associated with anterior

Limit to papers also referencing gene:
Results 1 - 50 of 3252 results

Page(s): 1 2 3 4 5 6 7 8 9 10 11 Next

Sort Newest To Oldest Sort Oldest To Newest

Lineage tracing of sclerotome cells in amphibian reveals that multipotent somitic cells originate from lateral somitic frontier., Della Gaspera B., Dev Biol. September 1, 2019; 453 (1): 11-18.        


Advancing genetic and genomic technologies deepen the pool for discovery in Xenopus tropicalis., Kakebeen A., Dev Dyn. August 1, 2019; 248 (8): 620-625.  


Cdc2-like kinase 2 (Clk2) promotes early neural development in Xenopus embryos., Virgirinia RP., Dev Growth Differ. August 1, 2019; 61 (6): 365-377.                              


Transformation of a neural activation and patterning model., Al Anber A., EMBO Rep. August 1, 2019; 20 (8): e48060.


A new transgenic reporter line reveals Wnt-dependent Snai2 re-expression and cranial neural crest differentiation in Xenopus., Li J., Sci Rep. August 1, 2019; 9 (1): 11191.              


Spatial analysis of RECK, MT1-MMP, and TIMP-2 proteins during early Xenopus laevis development., Willson JA., Gene Expr Patterns. July 26, 2019; 34 119066.              


Environmental Oxygen Exposure Allows for the Evolution of Interdigital Cell Death in Limb Patterning., Cordeiro IR., Dev Cell. July 22, 2019; 50 (2): 155-166.e4.            


Topologically correct central projections of tetrapod inner ear afferents require Fzd3., Duncan JS., Sci Rep. July 16, 2019; 9 (1): 10298.              


The role of sensory innervation in cornea-lens regeneration., Perry KJ., Dev Dyn. July 1, 2019; 248 (7): 530-544.          


Vangl2 coordinates cell rearrangements during gut elongation., Dush MK., Dev Dyn. July 1, 2019; 248 (7): 569-582.                


PDGF-B: The missing piece in the mosaic of PDGF family role in craniofacial development., Corsinovi D., Dev Dyn. July 1, 2019; 248 (7): 603-612.            


ISM1 regulates NODAL signaling and asymmetric organ morphogenesis during development., Osório L., J Cell Biol. July 1, 2019; 218 (7): 2388-2402.


Some aspects of the hypothalamic and pituitary development, metamorphosis, and reproductive behavior as studied in amphibians., Kikuyama S., Gen Comp Endocrinol. June 22, 2019; 113212.


Desmoplakin is required for epidermal integrity and morphogenesis in the Xenopus laevis embryo., Bharathan NK., Dev Biol. June 15, 2019; 450 (2): 115-131.                            


New roles for Wnt and BMP signaling in neural anteroposterior patterning., Polevoy H., EMBO Rep. June 1, 2019; 20 (6):


Developmental expression patterns of fosl genes in Xenopus tropicalis., Guo XF., Gene Expr Patterns. May 21, 2019; 34 119056.                


A single KH domain in Bicaudal-C links mRNA binding and translational repression functions to maternal development., Dowdle ME., Development. May 15, 2019; 146 (10):


Visualizing flow in an intact CSF network using optical coherence tomography: implications for human congenital hydrocephalus., Date P., Sci Rep. April 17, 2019; 9 (1): 6196.                            


Prdm12 Directs Nociceptive Sensory Neuron Development by Regulating the Expression of the NGF Receptor TrkA., Desiderio S., Cell Rep. March 26, 2019; 26 (13): 3522-3536.e5.                  


Whole-Cell Photoacoustic Sensor Based on Pigment Relocalization., Lauri A., ACS Sens. March 22, 2019; 4 (3): 603-612.            


Distribution and neuronal circuit of spexin 1/2 neurons in the zebrafish CNS., Kim E., Sci Rep. March 22, 2019; 9 (1): 5025.              


De novo transcription of multiple Hox cluster genes takes place simultaneously in early Xenopus tropicalis embryos., Kondo M., Biol Open. March 4, 2019; 8 (3):                                   


The Expression of Key Guidance Genes at a Forebrain Axon Turning Point Is Maintained by Distinct Fgfr Isoforms but a Common Downstream Signal Transduction Mechanism., Yang JJ., eNeuro. March 1, 2019; 6 (2):                   


Nucleotide receptor P2RY4 is required for head formation via induction and maintenance of head organizer in Xenopus laevis., Harata A., Dev Growth Differ. February 1, 2019; 61 (2): 186-197.                      


Non-acylated Wnts Can Promote Signaling., Speer KF., Cell Rep. January 22, 2019; 26 (4): 875-883.e5.                  


The return to water in ancestral Xenopus was accompanied by a novel mechanism for producing and shaping vocal signals., Kwong-Brown U., Elife. January 8, 2019; 8               


Leukemia inhibitory factor signaling in Xenopus embryo: Insights from gain of function analysis and dominant negative mutant of the receptor., Jalvy S., Dev Biol. January 1, 2019; 447 (2): 200-213.                                  


Noncanonical Modulation of the eIF2 Pathway Controls an Increase in Local Translation during Neural Wiring., Cagnetta R., Mol Cell. January 1, 2019; 73 (3): 474-489.e5.                


Xenopus slc7a5 is essential for notochord function and eye development., Katada T., Mech Dev. January 1, 2019; 155 48-59.                


A Label-free Multicolor Optical Surface Tomography (ALMOST) imaging method for nontransparent 3D samples., Kerstens A., BMC Biol. January 1, 2019; 17 (1): 1.          


Retinoic acid signaling reduction recapitulates the effects of alcohol on embryo size., Shukrun N., Genesis. January 1, 2019; 57 (7-8): e23284.                


Engineered transfer RNAs for suppression of premature termination codons., Lueck JD., Nat Commun. January 1, 2019; 10 (1): 822.          


GTP binding protein 10 is a member of the OBG family of proteins and is differentially expressed in the early Xenopus embryo., Jerry R., Gene Expr Patterns. January 1, 2019; 32 12-17.            


Evolution of the Rho guanine nucleotide exchange factors Kalirin and Trio and their gene expression in Xenopus development., Kratzer MC., Gene Expr Patterns. January 1, 2019; 32 18-27.                              


Etv6 activates vegfa expression through positive and negative transcriptional regulatory networks in Xenopus embryos., Li L., Nat Commun. January 1, 2019; 10 (1): 1083.                                          


Dynamin Binding Protein Is Required for Xenopus laevis Kidney Development., DeLay BD., Front Physiol. January 1, 2019; 10 143.                        


The Frog Xenopus as a Model to Study Joubert Syndrome: The Case of a Human Patient With Compound Heterozygous Variants in PIBF1., Ott T., Front Physiol. January 1, 2019; 10 134.                


Liver Specification in the Absence of Cardiac Differentiation Revealed by Differential Sensitivity to Wnt/β Catenin Pathway Activation., Haworth K., Front Physiol. January 1, 2019; 10 155.              


Developmental regulation of Wnt signaling by Nagk and the UDP-GlcNAc salvage pathway., Neitzel LR., Mech Dev. January 1, 2019; 156 20-31.                              


Agr2-interacting Prod1-like protein Tfp4 from Xenopus laevis is necessary for early forebrain and eye development as well as for the tadpole appendage regeneration., Tereshina MB., Genesis. January 1, 2019; 57 (5): e23293.                  


Axis elongation during Xenopus tail-bud stage is regulated by GABA expressed in the anterior-to-mid neural tube., Furukawa T., Int J Dev Biol. January 1, 2019; 63 (1-2): 37-43.            


Loss of function of Kmt2d, a gene mutated in Kabuki syndrome, affects heart development in Xenopus laevis., Schwenty-Lara J., Dev Dyn. January 1, 2019; 248 (6): 465-476.                  


What are the roles of retinoids, other morphogens, and Hox genes in setting up the vertebrate body axis?, Durston AJ., Genesis. January 1, 2019; 57 (7-8): e23296.          


Wolf-Hirschhorn Syndrome-Associated Genes Are Enriched in Motile Neural Crest Cells and Affect Craniofacial Development in Xenopus laevis., Mills A., Front Physiol. January 1, 2019; 10 431.                          


In vivo topology converts competition for cell-matrix adhesion into directional migration., Bajanca F., Nat Commun. January 1, 2019; 10 (1): 1518.                    


Using the Xenopus Developmental Eye Regrowth System to Distinguish the Role of Developmental Versus Regenerative Mechanisms., Kha CX., Front Physiol. January 1, 2019; 10 502.                


Cdc42 Effector Protein 3 Interacts With Cdc42 in Regulating Xenopus Somite Segmentation., Kho M., Front Physiol. January 1, 2019; 10 542.          


The Many Faces of Xenopus: Xenopus laevis as a Model System to Study Wolf-Hirschhorn Syndrome., Lasser M., Front Physiol. January 1, 2019; 10 817.          


Jmjd6a regulates GSK3β RNA splicing in Xenopus laevis eye development., Shin JY., PLoS One. January 1, 2019; 14 (7): e0219800.                      


Evolution of cis-regulatory modules for the head organizer gene goosecoid in chordates: comparisons between Branchiostoma and Xenopus., Yasuoka Y., Zoological Lett. January 1, 2019; 5 27.                

Page(s): 1 2 3 4 5 6 7 8 9 10 11 Next

Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.11.4


Major funding for Xenbase is provided by grant P41 HD064556