Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (56) Expression Attributions Wiki
XB-ANAT-56

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Epichordal vertebral column formation in Xenopus laevis., Takahashi Y., J Morphol. February 1, 2024; 285 (2): e21664.                      


Characterization of convergent thickening, a major convergence force producing morphogenic movement in amphibians., Shook DR., Elife. April 11, 2022; 11                                     


Abnormal left-right organizer and laterality defects in Xenopus embryos after formin inhibitor SMIFH2 treatment., Petri N., PLoS One. January 1, 2022; 17 (11): e0275164.        


Etv6 activates vegfa expression through positive and negative transcriptional regulatory networks in Xenopus embryos., Li L., Nat Commun. March 6, 2019; 10 (1): 1083.                                                        


A Conserved Role of the Unconventional Myosin 1d in Laterality Determination., Tingler M., Curr Biol. March 5, 2018; 28 (5): 810-816.e3.                


Gene expression of the two developmentally regulated dermatan sulfate epimerases in the Xenopus embryo., Gouignard N., PLoS One. January 18, 2018; 13 (1): e0191751.                                                          


A distinct mechanism of vascular lumen formation in Xenopus requires EGFL7., Charpentier MS., PLoS One. February 6, 2015; 10 (2): e0116086.              


FoxA4 favours notochord formation by inhibiting contiguous mesodermal fates and restricts anterior neural development in Xenopus embryos., Murgan S., PLoS One. January 1, 2014; 9 (10): e110559.                              


The cytoskeletal protein Zyxin inhibits Shh signaling during the CNS patterning in Xenopus laevis through interaction with the transcription factor Gli1., Martynova NY., Dev Biol. August 1, 2013; 380 (1): 37-48.                      


VEGFA-dependent and -independent pathways synergise to drive Scl expression and initiate programming of the blood stem cell lineage in Xenopus., Ciau-Uitz A., Development. June 1, 2013; 140 (12): 2632-42.                                                                                                                            


Uncoupling VEGFA functions in arteriogenesis and hematopoietic stem cell specification., Leung A., Dev Cell. January 28, 2013; 24 (2): 144-58.                                


High cell-autonomy of the anterior endomesoderm viewed in blastomere fate shift during regulative development in the isolated right halves of four-cell stage Xenopus embryos., Koga M., Dev Growth Differ. September 1, 2012; 54 (7): 717-29.              


A large scale screen for neural stem cell markers in Xenopus retina., Parain K., Dev Neurobiol. April 1, 2012; 72 (4): 491-506.                                                    


The spatio-temporal expression of ProSAP/shank family members and their interaction partner LAPSER1 during Xenopus laevis development., Gessert S., Dev Dyn. June 1, 2011; 240 (6): 1528-36.                      


A revised model of Xenopus dorsal midline development: differential and separable requirements for Notch and Shh signaling., Peyrot SM., Dev Biol. April 15, 2011; 352 (2): 254-66.                              


Tel1/ETV6 specifies blood stem cells through the agency of VEGF signaling., Ciau-Uitz A., Dev Cell. April 20, 2010; 18 (4): 569-78.                


Lef1 plays a role in patterning the mesoderm and ectoderm in Xenopus tropicalis., Roel G., Int J Dev Biol. January 1, 2009; 53 (1): 81-9.          


Semaphorin and neuropilin expression during early morphogenesis of Xenopus laevis., Koestner U., Dev Dyn. December 1, 2008; 237 (12): 3853-63.                                                                                              


The Wnt signaling regulator R-spondin 3 promotes angioblast and vascular development., Kazanskaya O., Development. November 1, 2008; 135 (22): 3655-64.                


Crossveinless-2 Is a BMP feedback inhibitor that binds Chordin/BMP to regulate Xenopus embryonic patterning., Ambrosio AL., Dev Cell. August 1, 2008; 15 (2): 248-60.                            


Identification and gene expression of versican during early development of Xenopus., Casini P., Int J Dev Biol. January 1, 2008; 52 (7): 993-8.      


Cloning and developmental expression of the Xenopus Nkx6 genes., Zhao S., Dev Genes Evol. June 1, 2007; 217 (6): 477-83.  


Census of vertebrate Wnt genes: isolation and developmental expression of Xenopus Wnt2, Wnt3, Wnt9a, Wnt9b, Wnt10a, and Wnt16., Garriock RJ., Dev Dyn. May 1, 2007; 236 (5): 1249-58.                  


Cholesterol homeostasis in development: the role of Xenopus 7-dehydrocholesterol reductase (Xdhcr7) in neural development., Tadjuidje E., Dev Dyn. August 1, 2006; 235 (8): 2095-110.                          


Apelin, the ligand for the endothelial G-protein-coupled receptor, APJ, is a potent angiogenic factor required for normal vascular development of the frog embryo., Cox CM., Dev Biol. August 1, 2006; 296 (1): 177-89.                  


Cooperative non-cell and cell autonomous regulation of Nodal gene expression and signaling by Lefty/Antivin and Brachyury in Xenopus., Cha YR., Dev Biol. February 15, 2006; 290 (2): 246-64.                        


Expression of Panza, an alpha2-macroglobulin, in a restricted dorsal domain of the primitive gut in Xenopus laevis., Pineda-Salgado L., Gene Expr Patterns. December 1, 2005; 6 (1): 3-10.      


Isolation and comparative expression analysis of the Myc-regulatory proteins Mad1, Mad3, and Mnt during Xenopus development., Juergens K., Dev Dyn. August 1, 2005; 233 (4): 1554-9.                                        


Xenopus nodal related-1 is indispensable only for left-right axis determination., Toyoizumi R., Int J Dev Biol. January 1, 2005; 49 (8): 923-38.                


Pattern and morphogenesis of presumptive superficial mesoderm in two closely related species, Xenopus laevis and Xenopus tropicalis., Shook DR., Dev Biol. June 1, 2004; 270 (1): 163-85.


Connective-tissue growth factor modulates WNT signalling and interacts with the WNT receptor complex., Mercurio S., Development. May 1, 2004; 131 (9): 2137-47.                    


A family of Xenopus BTB-Kelch repeat proteins related to ENC-1: new markers for early events in floorplate and placode development., Haigo SL., Gene Expr Patterns. October 1, 2003; 3 (5): 669-74.      


XHRT-1, a hairy and Enhancer of split related gene with expression in floor plate and hypochord during early Xenopus embryogenesis., Pichon B., Dev Genes Evol. November 1, 2002; 212 (10): 491-5.


Neural and head induction by insulin-like growth factor signals., Pera EM., Dev Cell. November 1, 2001; 1 (5): 655-65.    


Isolation and expression analysis of three zebrafish angiopoietin genes., Pham VN., Dev Dyn. August 1, 2001; 221 (4): 470-4.  


Notochord patterning of the endoderm., Cleaver O., Dev Biol. June 1, 2001; 234 (1): 1-12.      


Molecular cloning and expression analysis of the Hedgehog receptors XPtc1 and XSmo in Xenopus laevis., Koebernick K., Mech Dev. February 1, 2001; 100 (2): 303-8.  


Gli2 functions in FGF signaling during antero-posterior patterning., Brewster R., Development. October 1, 2000; 127 (20): 4395-405.            


Distinct origins of adult and embryonic blood in Xenopus., Ciau-Uitz A., Cell. September 15, 2000; 102 (6): 787-96.        


Cells remain competent to respond to mesoderm-inducing signals present during gastrulation in Xenopus laevis., Domingo C., Dev Biol. September 1, 2000; 225 (1): 226-40.                  


Regulation of gut and heart left-right asymmetry by context-dependent interactions between xenopus lefty and BMP4 signaling., Branford WW., Dev Biol. July 15, 2000; 223 (2): 291-306.              


Xenopus FK 506-binding protein, a novel immunophilin expressed during early development., Spokony R., Mech Dev. June 1, 2000; 94 (1-2): 205-8.  


The lefty-related factor Xatv acts as a feedback inhibitor of nodal signaling in mesoderm induction and L-R axis development in xenopus., Cheng AM., Development. March 1, 2000; 127 (5): 1049-61.                


Endoderm patterning by the notochord: development of the hypochord in Xenopus., Cleaver O., Development. February 1, 2000; 127 (4): 869-79.              


Elucidating the origins of the vascular system: a fate map of the vascular endothelial and red blood cell lineages in Xenopus laevis., Mills KR., Dev Biol. May 15, 1999; 209 (2): 352-68.                


What guides early embryonic blood vessel formation?, Weinstein BM., Dev Dyn. May 1, 1999; 215 (1): 2-11.  


cDNA cloning and distribution of the Xenopus follistatin-related protein., Okabayashi K., Biochem Biophys Res Commun. January 8, 1999; 254 (1): 42-8.                  


VEGF mediates angioblast migration during development of the dorsal aorta in Xenopus., Cleaver O., Development. October 1, 1998; 125 (19): 3905-14.          


Neovascularization of the Xenopus embryo., Cleaver O., Dev Dyn. September 1, 1997; 210 (1): 66-77.        


Left-right asymmetry of a nodal-related gene is regulated by dorsoanterior midline structures during Xenopus development., Lohr JL., Development. April 1, 1997; 124 (8): 1465-72.            

???pagination.result.page??? 1 2 ???pagination.result.next???