Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Anatomy Item Literature (25) Expression Attributions Wiki
XB-ANAT-579

Papers associated with glossopharyngeal nerve

Limit to papers also referencing gene:
Results 1 - 25 of 25 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Probing forebrain to hindbrain circuit functions in Xenopus., Kelley DB., Genesis. January 1, 2017; 55 (1-2):           


Microtubule-associated protein tau promotes neuronal class II β-tubulin microtubule formation and axon elongation in embryonic Xenopus laevis., Liu Y., Eur J Neurosci. May 1, 2015; 41 (10): 1263-75.            


Microarray identification of novel genes downstream of Six1, a critical factor in cranial placode, somite, and kidney development., Yan B., Dev Dyn. February 1, 2015; 244 (2): 181-210.                          


Methylmercury exposure during early Xenopus laevis development affects cell proliferation and death but not neural progenitor specification., Huyck RW., Neurotoxicol Teratol. January 1, 2015; 47 102-13.                


Characterization of tweety gene (ttyh1-3) expression in Xenopus laevis during embryonic development., Halleran AD., Gene Expr Patterns. January 1, 2015; 17 (1): 38-44.                            


The Nedd4-binding protein 3 (N4BP3) is crucial for axonal and dendritic branching in developing neurons., Schmeisser MJ., Neural Dev. September 17, 2013; 8 18.                    


Expression of pluripotency factors in larval epithelia of the frog Xenopus: evidence for the presence of cornea epithelial stem cells., Perry KJ., Dev Biol. February 15, 2013; 374 (2): 281-94.                


EBF factors drive expression of multiple classes of target genes governing neuronal development., Green YS., Neural Dev. April 30, 2011; 6 19.                                                          


Cloning and characterization of GABAA α subunits and GABAB subunits in Xenopus laevis during development., Kaeser GE., Dev Dyn. April 1, 2011; 240 (4): 862-73.                                          


Myosin-X is required for cranial neural crest cell migration in Xenopus laevis., Hwang YS., Dev Dyn. October 1, 2009; 238 (10): 2522-9.      


Loss of the Sall3 gene leads to palate deficiency, abnormalities in cranial nerves, and perinatal lethality., Parrish M., Mol Cell Biol. August 1, 2004; 24 (16): 7102-12.


The vesicular glutamate transporter 1 (xVGlut1) is expressed in discrete regions of the developing Xenopus laevis nervous system., Gleason KK., Gene Expr Patterns. August 1, 2003; 3 (4): 503-7.      


A screen for co-factors of Six3., Tessmar K., Mech Dev. September 1, 2002; 117 (1-2): 103-13.                  


The secreted glycoprotein Noelin-1 promotes neurogenesis in Xenopus., Moreno TA., Dev Biol. December 15, 2001; 240 (2): 340-60.                  


Xenopus laevis peripherin (XIF3) is expressed in radial glia and proliferating neural epithelial cells as well as in neurons., Gervasi C., J Comp Neurol. July 31, 2000; 423 (3): 512-31.                      


Enhancing effects of binary mixtures of acid with salt on the gustatory neural activity in the clawed toad, Xenopus laevis., Yamashita S., Brain Res Bull. January 1, 1997; 42 (5): 385-92.


Trophic effects of androgen: receptor expression and the survival of laryngeal motor neurons after axotomy., Pérez J., J Neurosci. November 1, 1996; 16 (21): 6625-33.              


Effects of intermediate filament disruption on the early development of the peripheral nervous system of Xenopus laevis., Lin W., Dev Biol. October 10, 1996; 179 (1): 197-211.            


Specificity of glossopharyngeal nerve responses to astringent compounds in Xenopus., Yamashita S., Chem Senses. August 1, 1996; 21 (4): 459-65.


Retinoic acid causes abnormal development and segmental patterning of the anterior hindbrain in Xenopus embryos., Papalopulu N., Development. December 1, 1991; 113 (4): 1145-58.                          


Sex differences in the motor nucleus of cranial nerve IX-X in Xenopus laevis: a quantitative Golgi study., Kelley DB., J Neurobiol. July 1, 1988; 19 (5): 413-29.


Development of substance P-like immunoreactivity in Xenopus embryos., Gallagher BC., J Comp Neurol. June 8, 1987; 260 (2): 175-85.


A possible role of the glomus cell in controlling vascular tone of the carotid labyrinth of Xenopus laevis., Kusakabe T., Tohoku J Exp Med. April 1, 1987; 151 (4): 395-408.


Origin and identification of fibers in the cranial nerve IX-X complex of Xenopus laevis: Lucifer Yellow backfills in vitro., Simpson HB., J Comp Neurol. February 22, 1986; 244 (4): 430-44.


[Glomus cell in controlling vascular tone of the carotid labyrinth (Xenopus laevis)]., Kusakabe T., Nihon Seirigaku Zasshi. January 1, 1984; 46 (10): 623-33.

Page(s): 1

Xenbase: The Xenopus Model Organism Knowledgebase.
Version: 4.15.0
Major funding for Xenbase is provided by grant P41 HD064556