Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Stage Literature (111) Attributions Wiki
XB-STAGE-62

Papers associated with NF stage 48

Limit to papers also referencing gene:
Results 1 - 20 of 111 results

Page(s): 1 2 3 4 5 6 Next

Sort Newest To Oldest Sort Oldest To Newest

The cardiac-restricted protein ADP-ribosylhydrolase-like 1 is essential for heart chamber outgrowth and acts on muscle actin filament assembly., Smith SJ, Towers N, Saldanha JW, Shang CA, Mahmood SR, Taylor WR, Mohun TJ., Dev Biol. August 15, 2016; 416 (2): 373-88.                                                      


HDAC3 But not HDAC2 Mediates Visual Experience-Dependent Radial Glia Proliferation in the Developing Xenopus Tectum., Gao J, Ruan H, Qi X, Tao Y, Guo X, Shen W., Front Cell Neurosci. January 1, 2016; 10 221.              


Ferritin H subunit gene is specifically expressed in melanophore precursor-derived white pigment cells in which reflecting platelets are formed from stage II melanosomes in the periodic albino mutant of Xenopus laevis., Fukuzawa T., Cell Tissue Res. September 1, 2015; 361 (3): 733-44.                  


Unliganded thyroid hormone receptor α regulates developmental timing via gene repression in Xenopus tropicalis., Choi J, Suzuki KT, Sakuma T, Shewade L, Yamamoto T, Buchholz DR., Endocrinology. February 1, 2015; 156 (2): 735-44.            


HDAC1 Regulates the Proliferation of Radial Glial Cells in the Developing Xenopus Tectum., Tao Y, Ruan H, Guo X, Li L, Shen W., PLoS One. January 1, 2015; 10 (3): e0120118.                


Embryological manipulations in the developing Xenopus inner ear reveal an intrinsic role for Wnt signaling in dorsal-ventral patterning., Forristall CA, Stellabotte F, Castillo A, Collazo A., Dev Dyn. October 1, 2014; 243 (10): 1262-74.            


Prolonged in vivo imaging of Xenopus laevis., Hamilton PW, Henry JJ., Dev Dyn. August 1, 2014; 243 (8): 1011-9.    


Phosphorylation and arginine methylation mark histone H2A prior to deposition during Xenopus laevis development., Wang WL, Anderson LC, Nicklay JJ, Chen H, Gamble MJ, Shabanowitz J, Hunt DF, Shechter D., Epigenetics Chromatin. January 1, 2014; 7 22.                


The structure and development of Xenopus laevis cornea., Hu W, Haamedi N, Lee J, Kinoshita T, Ohnuma S., Exp Eye Res. November 1, 2013; 116 109-28.


Effective RNAi-mediated β2-microglobulin loss of function by transgenesis in Xenopus laevis., Nedelkovska H, Edholm ES, Haynes N, Robert J, Robert J., Biol Open. March 15, 2013; 2 (3): 335-42.                


Early development of the thymus in Xenopus laevis., Lee YH, Lee YH, Williams A, Hong CS, You Y, Senoo M, Saint-Jeannet JP., Dev Dyn. February 1, 2013; 242 (2): 164-78.                            


Global hyper-synchronous spontaneous activity in the developing optic tectum., Imaizumi K, Shih JY, Farris HE., Sci Rep. January 1, 2013; 3 1552.            


Relationships between calpains and glutamate- or kainate-induced apoptosis in Xenopus laevis tadpoles., Brun C, Moudilou E, Bouchot C, Abrouk-Vérot L, Exbrayat JM., Folia Histochem Cytobiol. January 1, 2013; 51 (4): 300-11.


Histone deacetylases are required for amphibian tail and limb regeneration but not development., Taylor AJ, Beck CW., Mech Dev. September 1, 2012; 129 (9-12): 208-18.            


Transient downregulation of Bmp signalling induces extra limbs in vertebrates., Christen B, Rodrigues AM, Monasterio MB, Roig CF, Izpisua Belmonte JC., Development. July 1, 2012; 139 (14): 2557-65.        


Homeoprotein hhex-induced conversion of intestinal to ventral pancreatic precursors results in the formation of giant pancreata in Xenopus embryos., Zhao H, Han D, Dawid IB, Pieler T, Chen Y, Chen Y., Proc Natl Acad Sci U S A. May 29, 2012; 109 (22): 8594-9.                              


Spinal cord regeneration in Xenopus tadpoles proceeds through activation of Sox2-positive cells., Gaete M, Muñoz R, Sánchez N, Tampe R, Moreno M, Contreras EG, Lee-Liu D, Larraín J., Neural Dev. April 26, 2012; 7 13.            


The synthetic gestagen Levonorgestrel disrupts sexual development in Xenopus laevis by affecting gene expression of pituitary gonadotropins and gonadal steroidogenic enzymes., Lorenz C, Contardo-Jara V, Trubiroha A, Krüger A, Viehmann V, Wiegand C, Pflugmacher S, Nützmann G, Lutz I, Kloas W., Toxicol Sci. December 1, 2011; 124 (2): 311-9.


ARVCF depletion cooperates with Tbx1 deficiency in the development of 22q11.2DS-like phenotypes in Xenopus., Tran HT, Delvaeye M, Verschuere V, Descamps E, Crabbe E, Van Hoorebeke L, McCrea P, Adriaens D, Van Roy F, Vleminckx K, Vleminckx K., Dev Dyn. December 1, 2011; 240 (12): 2680-7.                


The synthetic gestagen levonorgestrel impairs metamorphosis in Xenopus laevis by disruption of the thyroid system., Lorenz C, Contardo-Jara V, Pflugmacher S, Wiegand C, Nützmann G, Lutz I, Kloas W., Toxicol Sci. September 1, 2011; 123 (1): 94-102.

Page(s): 1 2 3 4 5 6 Next

Xenbase: The Xenopus laevis and X. tropicalis resource.
Version: 4.11.2


Major funding for Xenbase is provided by grant P41 HD064556