Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Stage Literature (59) Attributions Wiki
XB-STAGE-63

Papers associated with NF stage 49

Limit to papers also referencing gene:
Results 1 - 50 of 59 results

Page(s): 1 2 Next

Sort Newest To Oldest Sort Oldest To Newest

A cellular mechanism for inverse effectiveness in multisensory integration., Truszkowski TL, Carrillo OA, Bleier J, Ramirez-Vizcarrondo CM, Felch DL, McQuillan M, Truszkowski CP, Khakhalin AS, Khakhalin AS, Aizenman CD., Elife. January 1, 2017; 6       


In vivo tracking of histone H3 lysine 9 acetylation in Xenopus laevis during tail regeneration., Suzuki M, Takagi C, Miura S, Sakane Y, Suzuki M, Sakuma T, Sakamoto N, Endo T, Kamei Y, Sato Y, Kimura H, Yamamoto T, Ueno N, Suzuki KT, Suzuki KT., Genes Cells. April 1, 2016; 21 (4): 358-69.                        


HDAC3 But not HDAC2 Mediates Visual Experience-Dependent Radial Glia Proliferation in the Developing Xenopus Tectum., Gao J, Ruan H, Qi X, Tao Y, Guo X, Shen W., Front Cell Neurosci. January 1, 2016; 10 221.              


An NMDA receptor-dependent mechanism for subcellular segregation of sensory inputs in the tadpole optic tectum., Hamodi AS, Liu Z, Pratt KG., Elife. January 1, 2016; 5                   


Gremlin1 induces anterior-posterior limb bifurcations in developing Xenopus limbs but does not enhance limb regeneration., Wang YH, Keenan SR, Lynn J, McEwan JC, Beck CW., Mech Dev. November 1, 2015; 138 Pt 3 256-67.                


Semicircular canal-dependent developmental tuning of translational vestibulo-ocular reflexes in Xenopus laevis., Branoner F, Straka H., Dev Neurobiol. October 1, 2015; 75 (10): 1051-67.


Changes in gastric sodium-iodide symporter (NIS) activity are associated with differences in thyroid gland sensitivity to perchlorate during metamorphosis., Carr JA, Murali S, Hu F, Goleman WL, Carr DL, Smith EE, Wages M., Gen Comp Endocrinol. August 1, 2015; 219 16-23.              


Multivariate analysis of electrophysiological diversity of Xenopus visual neurons during development and plasticity., Ciarleglio CM, Khakhalin AS, Wang AF, Constantino AC, Yip SP, Aizenman CD., Elife. July 9, 2015; 4                 


Unliganded thyroid hormone receptor α regulates developmental timing via gene repression in Xenopus tropicalis., Choi J, Suzuki KT, Sakuma T, Shewade L, Yamamoto T, Buchholz DR., Endocrinology. February 1, 2015; 156 (2): 735-44.            


HDAC1 Regulates the Proliferation of Radial Glial Cells in the Developing Xenopus Tectum., Tao Y, Ruan H, Guo X, Li L, Shen W., PLoS One. January 1, 2015; 10 (3): e0120118.                


Distal expression of sprouty (spry) genes during Xenopus laevis limb development and regeneration., Wang YH, Beck CW., Gene Expr Patterns. May 1, 2014; 15 (1): 61-6.                                                  


Attenuation of bone morphogenetic protein signaling during amphibian limb development results in the generation of stage-specific defects., Jones TE, Day RC, Beck CW., J Anat. November 1, 2013; 223 (5): 474-88.  


Global hyper-synchronous spontaneous activity in the developing optic tectum., Imaizumi K, Shih JY, Farris HE., Sci Rep. January 1, 2013; 3 1552.            


Unraveling new roles for serotonin receptor 2B in development: key findings from Xenopus., Ori M, De Lucchini S, Marras G, Nardi I., Int J Dev Biol. January 1, 2013; 57 (9-10): 707-14.          


A transgenic Xenopus laevis reporter model to study lymphangiogenesis., Ny A, Vandevelde W, Hohensinner P, Beerens M, Geudens I, Diez-Juan A, Brepoels K, Plaisance S, Krieg PA, Langenberg T, Vinckier S, Luttun A, Carmeliet P, Dewerchin M., Biol Open. January 1, 2013; 2 (9): 882-90.            


A competition-based mechanism mediates developmental refinement of tectal neuron receptive fields., Dong W, Aizenman CD., J Neurosci. November 21, 2012; 32 (47): 16872-9.


Transient downregulation of Bmp signalling induces extra limbs in vertebrates., Christen B, Rodrigues AM, Monasterio MB, Roig CF, Izpisua Belmonte JC., Development. July 1, 2012; 139 (14): 2557-65.        


Spinal cord regeneration in Xenopus tadpoles proceeds through activation of Sox2-positive cells., Gaete M, Muñoz R, Sánchez N, Tampe R, Moreno M, Contreras EG, Lee-Liu D, Larraín J., Neural Dev. April 26, 2012; 7 13.            


GABAergic transmission and chloride equilibrium potential are not modulated by pyruvate in the developing optic tectum of Xenopus laevis tadpoles., Khakhalin AS, Aizenman CD., PLoS One. January 1, 2012; 7 (4): e34446.          


New doxycycline-inducible transgenic lines in Xenopus., Rankin SA, Rankin SA, Zorn AM, Buchholz DR., Dev Dyn. June 1, 2011; 240 (6): 1467-74.        


Unusual development of light-reflecting pigment cells in intact and regenerating tail in the periodic albino mutant of Xenopus laevis., Fukuzawa T., Cell Tissue Res. October 1, 2010; 342 (1): 53-66.                  


Serotonin 2B receptor signaling is required for craniofacial morphogenesis and jaw joint formation in Xenopus., Reisoli E, De Lucchini S, Nardi I, Ori M., Development. September 1, 2010; 137 (17): 2927-37.                            


Neurogenesis during optic tectum regeneration in Xenopus laevis., Bernardini S, Gargioli C, Cannata SM, Filoni S., Dev Growth Differ. May 1, 2010; 52 (4): 365-76.


In vivo spike-timing-dependent plasticity in the optic tectum of Xenopus laevis., Richards BA, Aizenman CD, Akerman CJ., Front Synaptic Neurosci. January 1, 2010; 2 7.          


Semicircular canal size determines the developmental onset of angular vestibuloocular reflexes in larval Xenopus., Lambert FM, Beck JC, Baker R, Straka H., J Neurosci. August 6, 2008; 28 (32): 8086-95.                  


Effect of atrazine on metamorphosis and sexual differentiation in Xenopus laevis., Oka T, Tooi O, Mitsui N, Miyahara M, Ohnishi Y, Takase M, Kashiwagi A, Shinkai T, Santo N, Iguchi T., Aquat Toxicol. May 30, 2008; 87 (4): 215-26.


Neurogenic development of the auditory areas of the midbrain and diencephalon in the Xenopus laevis and evolutionary implications., Zeng SJ, Tian C, Zhang X, Zuo MX., Dev Biol. April 24, 2008; 1206 44-60.                    


Regeneration of neural crest derivatives in the Xenopus tadpole tail., Lin G, Chen Y, Slack JM., BMC Dev Biol. May 24, 2007; 7 56.                    


All ZZ male Xenopus laevis provides a clear sex-reversal test for feminizing endocrine disruptors., Oka T, Mitsui N, Hinago M, Miyahara M, Fujii T, Tooi O, Santo N, Urushitani H, Iguchi T, Hanaoka Y, Mikamid H., Ecotoxicol Environ Saf. February 1, 2006; 63 (2): 236-43.


Characteristics of initiation and early events for muscle development in the Xenopus limb bud., Satoh A, Sakamaki K, Ide H, Tamura K, Tamura K., Dev Dyn. December 1, 2005; 234 (4): 846-57.            


Hoxa2 knockdown in Xenopus results in hyoid to mandibular homeosis., Baltzinger M, Ori M, Pasqualetti M, Nardi I, Rijli FM., Dev Dyn. December 1, 2005; 234 (4): 858-67.          


Knockdown of the complete Hox paralogous group 1 leads to dramatic hindbrain and neural crest defects., McNulty CL, Peres JN, Bardine N, van den Akker WM, Durston AJ., Development. June 1, 2005; 132 (12): 2861-71.                    


Connexin 43 expression in glial cells of developing rhombomeres of Xenopus laevis., Katbamna B, Jelaso AM, Ide CF., Int J Dev Neurosci. February 1, 2004; 22 (1): 47-55.            


Molecular pathways needed for regeneration of spinal cord and muscle in a vertebrate., Beck CW, Christen B, Slack JM., Dev Cell. September 1, 2003; 5 (3): 429-39.            


Transgenic analysis of the atrialnatriuretic factor (ANF) promoter: Nkx2-5 and GATA-4 binding sites are required for atrial specific expression of ANF., Small EM, Krieg PA., Dev Biol. September 1, 2003; 261 (1): 116-31.          


Three-dimensional morphology of inner ear development in Xenopus laevis., Bever MM, Jean YY, Fekete DM., Dev Dyn. July 1, 2003; 227 (3): 422-30.            


Ontogenic emergence and localization of larval skin antigen molecule recognized by adult T cells of Xenopus laevis: Regulation by thyroid hormone during metamorphosis., Watanabe M, Ohshima M, Morohashi M, Maéno M, Izutsu Y., Dev Growth Differ. February 1, 2003; 45 (1): 77-84.        


Cloning and expression of a novel armadillo motif containing gene in Xenopus., Chang JY, Han JK., Mech Dev. December 1, 2002; 119 Suppl 1 S83-5.            


Ectopic Hoxa2 induction after neural crest migration results in homeosis of jaw elements in Xenopus., Pasqualetti M, Ori M, Nardi I, Rijli FM., Development. December 1, 2000; 127 (24): 5367-78.          


Blood pressure control in a larval amphibian, Xenopus laevis., Warburton SJ, Fritsche R., J Exp Biol. July 1, 2000; 203 (Pt 13): 2047-52.


Spatio-temporal expression of Xenopus vasa homolog, XVLG1, in oocytes and embryos: the presence of XVLG1 RNA in somatic cells as well as germline cells., Ikenishi K, Tanaka TS., Dev Growth Differ. April 1, 2000; 42 (2): 95-103.          


Expression of olfactory receptors during development in Xenopus laevis., Mezler M, Konzelmann S, Freitag J, Rössler P, Breer H., J Exp Biol. February 1, 1999; 202 (Pt 4): 365-76.


Metamorphosis-associated and region-specific expression of calbindin gene in the posterior intestinal epithelium of Xenopus laevis larva., Amano T, Noro N, Kawabata H, Kobayashi Y, Yoshizato K., Dev Growth Differ. April 1, 1998; 40 (2): 177-88.                


Immunohistochemical studies on the development of TSH cells in the pituitary of Xenopus laevis larvae., Ogawa K, Suzuki E, Taniguchi K., J Vet Med Sci. June 1, 1995; 57 (3): 539-42.    


Ontogeny of catecholamine systems in the central nervous system of anuran amphibians: an immunohistochemical study with antibodies against tyrosine hydroxylase and dopamine., González A, Marín O, Tuinhof R, Smeets WJ., J Comp Neurol. August 1, 1994; 346 (1): 63-79.


[Ontogeny of the pronephros and mesonephros in the South African clawed frog, Xenopus laevis Daudin, with special reference to the appearance and movement of the renin-immunopositive cells]., Tahara T, Ogawa K, Taniguchi K., Jikken Dobutsu. October 1, 1993; 42 (4): 601-10.


Xlcaax-1 is localized to the basolateral membrane of kidney tubule and other polarized epithelia during Xenopus development., Cornish JA, Kloc M, Decker GL, Reddy BA, Etkin LD., Dev Biol. March 1, 1992; 150 (1): 108-20.                  


Spatio-temporal patterns of retinal ganglion cell death during Xenopus development., Gaze RM, Grant P., J Comp Neurol. January 15, 1992; 315 (3): 264-74.


Early development of rubrospinal and cerebellorubral projections in Xenopus laevis., ten Donkelaar HJ, de Boer-van Huizen R, van der Linden JA., Brain Res Dev Brain Res. February 22, 1991; 58 (2): 297-300.


The Xenopus XIHbox 6 homeo protein, a marker of posterior neural induction, is expressed in proliferating neurons., Wright CV, Morita EA, Wilkin DJ, De Robertis EM., Development. May 1, 1990; 109 (1): 225-34.                

Page(s): 1 2 Next

Xenbase: The Xenopus Model Organism Knowledgebase.
Version: 4.15.0
Major funding for Xenbase is provided by grant P41 HD064556