Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (565) Expression Attributions Wiki
XB-ANAT-64

Papers associated with myocardium (and srf)

Limit to papers also referencing gene:
Show all myocardium papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Dissociation of cardiogenic and postnatal myocardial activities of GATA4., Gallagher JM., Mol Cell Biol. June 1, 2012; 32 (12): 2214-23.


Myoskeletin, a factor related to Myocardin, is expressed in somites and required for hypaxial muscle formation in Xenopus., Zhao H., Int J Dev Biol. January 1, 2007; 51 (4): 315-20.              


Myocardin is sufficient and necessary for cardiac gene expression in Xenopus., Small EM., Development. March 1, 2005; 132 (5): 987-97.            


Transcriptional regulation of the cardiac-specific MLC2 gene during Xenopus embryonic development., Latinkic BV., Development. February 1, 2004; 131 (3): 669-79.                    


Transgenic analysis of the atrialnatriuretic factor (ANF) promoter: Nkx2-5 and GATA-4 binding sites are required for atrial specific expression of ANF., Small EM., Dev Biol. September 1, 2003; 261 (1): 116-31.          


Modulation of cardiac growth and development by HOP, an unusual homeodomain protein., Shin CH., Cell. September 20, 2002; 110 (6): 725-35.


Hop is an unusual homeobox gene that modulates cardiac development., Chen F., Cell. September 20, 2002; 110 (6): 713-23.


Differential regulation of the cardiac sodium calcium exchanger promoter in adult and neonatal cardiomyocytes by Nkx2.5 and serum response factor., Müller JG., J Mol Cell Cardiol. July 1, 2002; 34 (7): 807-21.


Distinct enhancers regulate skeletal and cardiac muscle-specific expression programs of the cardiac alpha-actin gene in Xenopus embryos., Latinkić BV., Dev Biol. May 1, 2002; 245 (1): 57-70.          


Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor., Wang D., Cell. June 29, 2001; 105 (7): 851-62.  


Requirement for BMP and FGF signaling during cardiogenic induction in non-precardiac mesoderm is specific, transient, and cooperative., Barron M., Dev Dyn. June 1, 2000; 218 (2): 383-93.


Organization and myogenic restricted expression of the murine serum response factor gene. A role for autoregulation., Belaguli NS., J Biol Chem. July 18, 1997; 272 (29): 18222-31.


Competition between negative acting YY1 versus positive acting serum response factor and tinman homologue Nkx-2.5 regulates cardiac alpha-actin promoter activity., Chen CY., Mol Endocrinol. June 1, 1997; 11 (6): 812-22.


Recruitment of the tinman homolog Nkx-2.5 by serum response factor activates cardiac alpha-actin gene transcription., Chen CY., Mol Cell Biol. November 1, 1996; 16 (11): 6372-84.


Activation of the cardiac alpha-actin promoter depends upon serum response factor, Tinman homologue, Nkx-2.5, and intact serum response elements., Chen CY., Dev Genet. January 1, 1996; 19 (2): 119-30.


A family of muscle gene promoter element (CArG) binding activities in Xenopus embryos: CArG/SRE discrimination and distribution during myogenesis., Taylor MV., Nucleic Acids Res. May 25, 1991; 19 (10): 2669-75.

???pagination.result.page??? 1