Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Stage Literature (72) Attributions Wiki
XB-STAGE-67

Papers associated with NF stage 53

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Gremlin1 induces anterior-posterior limb bifurcations in developing Xenopus limbs but does not enhance limb regeneration., Wang YH, Keenan SR, Lynn J, McEwan JC, Beck CW., Mech Dev. November 1, 2015; 138 Pt 3 256-67.                


Epigenetic modification maintains intrinsic limb-cell identity in Xenopus limb bud regeneration., Hayashi S, Kawaguchi A, Uchiyama I, Kawasumi-Kita A, Kobayashi T, Nishide H, Tsutsumi R, Tsuru K, Inoue T, Ogino H, Agata K, Tamura K, Yokoyama H., Dev Biol. October 15, 2015; 406 (2): 271-82.              


Semicircular canal-dependent developmental tuning of translational vestibulo-ocular reflexes in Xenopus laevis., Branoner F, Straka H., Dev Neurobiol. October 1, 2015; 75 (10): 1051-67.            


Evidence for an amphibian sixth digit., Hayashi S, Kobayashi T, Yano T, Kamiyama N, Egawa S, Seki R, Takizawa K, Okabe M, Yokoyama H, Tamura K., Zoological Lett. June 15, 2015; 1 17.                  


Unliganded thyroid hormone receptor α regulates developmental timing via gene repression in Xenopus tropicalis., Choi J, Suzuki KT, Sakuma T, Shewade L, Yamamoto T, Buchholz DR., Endocrinology. February 1, 2015; 156 (2): 735-44.            


Distal expression of sprouty (spry) genes during Xenopus laevis limb development and regeneration., Wang YH, Beck CW., Gene Expr Patterns. May 1, 2014; 15 (1): 61-6.                                                  


Scar-free wound healing and regeneration in amphibians: Immunological influences on regenerative success., Godwin JW, Rosenthal N., Differentiation. January 1, 2014; .      


M-cadherin-mediated intercellular interactions activate satellite cell division., Marti M, Montserrat N, Pardo C, Mulero L, Miquel-Serra L, Rodrigues AM, Andrés Vaquero J, Kuebler B, Morera C, Barrero MJ, Izpisua Belmonte JC., J Cell Sci. November 15, 2013; 126 (Pt 22): 5116-31.    


Nonclassical MHC class I-dependent invariant T cells are evolutionarily conserved and prominent from early development in amphibians., Edholm ES, Albertorio Saez LM, Gill AL, Gill SR, Grayfer L, Haynes N, Myers JR, Robert J., Proc Natl Acad Sci U S A. August 27, 2013; 110 (35): 14342-7.          


Ciliogenesis and cerebrospinal fluid flow in the developing Xenopus brain are regulated by foxj1., Hagenlocher C, Walentek P, M Ller C, Thumberger T, Feistel K., Cilia. April 29, 2013; 2 (1): 12.                  


Changes in the inflammatory response to injury and its resolution during the loss of regenerative capacity in developing Xenopus limbs., Mescher AL, Neff AW, King MW, King MW., PLoS One. January 1, 2013; 8 (11): e80477.          


The developing Xenopus limb as a model for studies on the balance between inflammation and regeneration., King MW, King MW, Neff AW, Mescher AL., Anat Rec (Hoboken). October 1, 2012; 295 (10): 1552-61.


Strategies to detect interdigital cell death in the frog, Xenopus laevis: T3 accerelation, BMP application, and mesenchymal cell cultivation., Shimizu-Nishikawa K, Nishimatsu S, Nishikawa A., In Vitro Cell Dev Biol Anim. May 1, 2012; 48 (5): 313-25.


Visualisation of cerebrospinal fluid flow patterns in albino Xenopus larvae in vivo., Mogi K, Adachi T, Izumi S, Toyoizumi R., Fluids Barriers CNS. April 25, 2012; 9 9.          


The development of the adult intestinal stem cells: Insights from studies on thyroid hormone-dependent amphibian metamorphosis., Shi YB, Hasebe T, Fu L, Fujimoto K, Ishizuya-Oka A., Cell Biosci. September 6, 2011; 1 (1): 30.        


The secreted integrin ligand nephronectin is necessary for forelimb formation in Xenopus tropicalis., Abu-Daya A, Nishimoto S, Fairclough L, Mohun TJ, Logan MP, Zimmerman LB., Dev Biol. January 15, 2011; 349 (2): 204-12.                                


Effects of nonylphenol on early embryonic development, pigmentation and 3,5,3'-triiodothyronine-induced metamorphosis in Bombina orientalis (Amphibia: Anura)., Park CJ, Kang HS, Gye MC., Chemosphere. November 1, 2010; 81 (10): 1292-300.


Photoreceptor development in premetamorphic and metamorphic Xenopus laevis., Parker RO, Mccarragher B, Crouch R, Darden AG., Anat Rec (Hoboken). March 1, 2010; 293 (3): 383-7.


Analysis of hoxa11 and hoxa13 expression during patternless limb regeneration in Xenopus., Ohgo S, Itoh A, Suzuki M, Satoh A, Yokoyama H, Tamura K, Tamura K., Dev Biol. February 15, 2010; 338 (2): 148-57.          


RNA helicase Ddx39 is expressed in the developing central nervous system, limb, otic vesicle, branchial arches and facial mesenchyme of Xenopus laevis., Wilson JM, Martinez-De Luna RI, Hodiri HM, Smith R, King MW, King MW, Mescher AL, Neff AW, Belecky-Adams TL., Gene Expr Patterns. January 1, 2010; 10 (1): 44-52.          


Studies on Xenopus laevis intestine reveal biological pathways underlying vertebrate gut adaptation from embryo to adult., Heimeier RA, Das B, Buchholz DR, Fiorentino M, Shi YB., Genome Biol. January 1, 2010; 11 (5): R55.                    


Proteomics analysis of regenerating amphibian limbs: changes during the onset of regeneration., King MW, King MW, Neff AW, Mescher AL., Int J Dev Biol. January 1, 2009; 53 (7): 955-69.


Neurogenic development of the auditory areas of the midbrain and diencephalon in the Xenopus laevis and evolutionary implications., Zeng SJ, Tian C, Zhang X, Zuo MX., Dev Biol. April 24, 2008; 1206 44-60.                    


Correlation between Shh expression and DNA methylation status of the limb-specific Shh enhancer region during limb regeneration in amphibians., Yakushiji N, Suzuki M, Satoh A, Sagai T, Shiroishi T, Kobayashi H, Sasaki H, Ide H, Tamura K, Tamura K., Dev Biol. December 1, 2007; 312 (1): 171-82.  


Neural MMP-28 expression precedes myelination during development and peripheral nerve repair., Werner SR, Mescher AL, Neff AW, King MW, King MW, Chaturvedi S, Duffin KL, Harty MW, Smith RC., Dev Dyn. October 1, 2007; 236 (10): 2852-64.              


Transgenic Xenopus with prx1 limb enhancer reveals crucial contribution of MEK/ERK and PI3K/AKT pathways in blastema formation during limb regeneration., Suzuki M, Satoh A, Ide H, Tamura K, Tamura K., Dev Biol. April 15, 2007; 304 (2): 675-86.              


Global analysis of gene expression in Xenopus hindlimbs during stage-dependent complete and incomplete regeneration., Grow M, Neff AW, Mescher AL, King MW, King MW., Dev Dyn. October 1, 2006; 235 (10): 2667-85.  


Temporal requirement for bone morphogenetic proteins in regeneration of the tail and limb of Xenopus tadpoles., Beck CW, Christen B, Barker D, Slack JM., Mech Dev. September 1, 2006; 123 (9): 674-88.              


Characterization of atrazine-induced gonadal malformations in African clawed frogs (Xenopus laevis) and comparisons with effects of an androgen antagonist (cyproterone acetate) and exogenous estrogen (17beta-estradiol): Support for the demasculinization/feminization hypothesis., Hayes TB, Stuart AA, Mendoza M, Collins A, Noriega N, Vonk A, Johnston G, Liu R, Kpodzo D., Environ Health Perspect. April 1, 2006; 114 Suppl 1 (Suppl 1): 134-41.                          


Analysis of scleraxis and dermo-1 genes in a regenerating limb of Xenopus laevis., Satoh A, Nakada Y, Suzuki M, Tamura K, Tamura K, Ide H., Dev Dyn. April 1, 2006; 235 (4): 1065-73.      


Functional regeneration of the olfactory bulb requires reconnection to the olfactory nerve in Xenopus larvae., Yoshino J, Tochinai S., Dev Growth Differ. January 1, 2006; 48 (1): 15-24.            


A novel role for lbx1 in Xenopus hypaxial myogenesis., Martin BL, Harland RM., Development. January 1, 2006; 133 (2): 195-208.                                


Characteristics of initiation and early events for muscle development in the Xenopus limb bud., Satoh A, Sakamaki K, Ide H, Tamura K, Tamura K., Dev Dyn. December 1, 2005; 234 (4): 846-57.            


Molecular cloning of Dmrt1 and its expression in the gonad of Xenopus., Osawa N, Oshima Y, Nakamura M., Zoolog Sci. June 1, 2005; 22 (6): 681-7.


Expression of Xenopus XlSALL4 during limb development and regeneration., Neff AW, King MW, King MW, Harty MW, Nguyen T, Calley J, Smith RC, Mescher AL., Dev Dyn. June 1, 2005; 233 (2): 356-67.                  


Lens-forming competence in the epidermis of Xenopus laevis during development., Arresta E, Bernardini S, Gargioli C, Filoni S, Cannata SM., J Exp Zool A Comp Exp Biol. January 1, 2005; 303 (1): 1-12.


Successful reconstitution of the non-regenerating adult telencephalon by cell transplantation in Xenopus laevis., Yoshino J, Tochinai S., Dev Growth Differ. December 1, 2004; 46 (6): 523-34.          


Expression of type II iodothyronine deiodinase marks the time that a tissue responds to thyroid hormone-induced metamorphosis in Xenopus laevis., Cai L, Brown DD., Dev Biol. February 1, 2004; 266 (1): 87-95.                


Intercalary and supernumerary regeneration in the limbs of the frog, Xenopus laevis., Shimizu-Nishikawa K, Takahashi J, Nishikawa A., Dev Dyn. August 1, 2003; 227 (4): 563-72.              


Ontogenic emergence and localization of larval skin antigen molecule recognized by adult T cells of Xenopus laevis: Regulation by thyroid hormone during metamorphosis., Watanabe M, Ohshima M, Morohashi M, Maéno M, Izutsu Y., Dev Growth Differ. February 1, 2003; 45 (1): 77-84.        


Identification of genes expressed during Xenopus laevis limb regeneration by using subtractive hybridization., King MW, King MW, Nguyen T, Calley J, Harty MW, Muzinich MC, Mescher AL, Chalfant C, N'Cho M, McLeaster K, McEntire J, Stocum D, Smith RC, Neff AW., Dev Dyn. February 1, 2003; 226 (2): 398-409.


Rod sensitivity during Xenopus development., Xiong WH, Yau KW., J Gen Physiol. December 1, 2002; 120 (6): 817-27.                    


Descending supraspinal pathways in amphibians: III. Development of descending projections to the spinal cord in Xenopus laevis with emphasis on the catecholaminergic inputs., Sánchez-Camacho C, Martín O, Ten Donkelaar HJ, González A., J Comp Neurol. April 22, 2002; 446 (1): 11-24.


Origin and development of descending catecholaminergic pathways to the spinal cord in amphibians., Sánchez-Camacho C, Marín O, López JM, Moreno N, Smeets WJ, ten Donkelaar HJ, González A., Brain Res Bull. February 1, 2002; 57 (3-4): 325-30.


Connexin43 expression during Xenopus development., van der Heyden MA, Roeleveld L, Peterson J, Destrée OH., Mech Dev. October 1, 2001; 108 (1-2): 217-20.              


Timing of metamorphosis and the onset of the negative feedback loop between the thyroid gland and the pituitary is controlled by type II iodothyronine deiodinase in Xenopus laevis., Huang H, Cai L, Remo BF, Brown DD., Proc Natl Acad Sci U S A. June 19, 2001; 98 (13): 7348-53.          


An epidermal signal regulates Lmx-1 expression and dorsal-ventral pattern during Xenopus limb regeneration., Matsuda H, Yokoyama H, Endo T, Tamura K, Tamura K, Ide H., Dev Biol. January 15, 2001; 229 (2): 351-62.            


Analysis of gene expressions during Xenopus forelimb regeneration., Endo T, Tamura K, Tamura K, Ide H., Dev Biol. April 15, 2000; 220 (2): 296-306.          


Mesenchyme with fgf-10 expression is responsible for regenerative capacity in Xenopus limb buds., Yokoyama H, Yonei-Tamura S, Endo T, Izpisúa Belmonte JC, Tamura K, Tamura K, Ide H., Dev Biol. March 1, 2000; 219 (1): 18-29.              


Development of adrenergic and cholinergic cardiac control in larvae of the African clawed frog Xenopus laevis., Jacobsson A, Fritsche R., Physiol Biochem Zool. January 1, 1999; 72 (3): 328-38.

???pagination.result.page??? 1 2 ???pagination.result.next???