Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1040) Expression Attributions Wiki
XB-ANAT-71

Papers associated with dorsal marginal zone

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 4 5 6 7 8 9 10 11 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Localization of the ribosomal DNA complements in the nucleolar organizer region of Xenopus laevis., Birnstiel ML., Natl Cancer Inst Monogr. December 1, 1966; 23 431-47.


[Increase in organizer cistrons for 5S RNA and transfer RNA in small Xenopus laevis oocytes]., Wegnez M., Arch Int Physiol Biochim. January 1, 1971; 79 (1): 215-7.


[Biochemical research on oogenesis. 4. Absence of amplification of 5 S RNA and tRNA organizer genes in early Xenopus laevis oocytes]., Wegnez M., Biochimie. January 1, 1972; 54 (8): 1069-72.


Properties of the primary organization field in the embryo of Xenopus laevis. 3. Retention of polarity in cell groups excised from the region of the early organizer., Cooke J., J Embryol Exp Morphol. August 1, 1972; 28 (1): 47-56.


Properties of the primary organization field in the embryo of Xenopus laevis. I. Autonomy of cell behaviour at the site of initial organizer formation., Cooke J., J Embryol Exp Morphol. August 1, 1972; 28 (1): 13-26.


The nucleolar organizer of Plethodon cinereus cinereus (Green). I. Location of the nucleolar organizer by in situ nucleic acid hybridization., Macgregor HC., Chromosoma. July 18, 1973; 42 (4): 415-26.


Properties of the primary organization field in the embryo of Xenopus laevis. V. Regulation after removal of the head organizer, in normal early gastrulae and in those already possessing a second implanted organizer., Cooke J., J Embryol Exp Morphol. October 1, 1973; 30 (2): 283-300.


Control of 5S RNA synthesis during early development of anucleolate and partial nucleolate mutants of Xenopus laevis., Miller L., J Cell Biol. December 1, 1973; 59 (3): 624-32.


Variation in rDNA redundancy level and nucleolar organizer length in normal and variant lines of the Mexican axolotl., Sinclair JH., J Cell Sci. July 1, 1974; 15 (2): 239-57.


Amplified ribosomal DNA from Xenopus laevis has heterogeneous spacer lengths., Wellauer PK., Proc Natl Acad Sci U S A. July 1, 1974; 71 (7): 2823-7.


Repression of nucleolar organizer activity in an interspecific hybrid of the genus Xenopus., Cassidy DM., Dev Biol. November 1, 1974; 41 (1): 84-96.


Local autonomy of gastrulation movements after dorsal lip removal in two anuran amphibians., Cooke J., J Embryol Exp Morphol. February 1, 1975; 33 (1): 147-57.


In situ hybridization of "nick-translated" 3H-ribosomal DNA to chromosomes from salamanders., Macgregor HC., Chromosoma. January 27, 1976; 54 (1): 15-25.


The karyotype of the tetraploid species Xenopus vestitus Laurent (Anura: pipidae)., Tymowska J., Cytogenet Cell Genet. January 1, 1977; 19 (6): 344-54.


Transplantation of nuclei from lymphocytes of adult frogs into enucleated eggs: special focus on technical parameters., Du Pasquier L., Differentiation. May 26, 1977; 8 (1): 9-19.


Differently sized rDNA repeating units of Xenopus laevis are arranged as internally homogeneous clusters along the nucleolar organizer., Junakovic N., Nucleic Acids Res. April 1, 1978; 5 (4): 1335-43.


Cell number in relation to primary pattern formation in the embryo of Xenopus laevis. I. The cell cycle during new pattern formation in response to implanted organizers., Cooke J., J Embryol Exp Morphol. June 1, 1979; 51 165-82.


Multiple ribosomal gene sites revealed by in situ hybridization of Xenopus rDNA to Triturus lampbrush chromosomes., Morgan GT., Chromosoma. January 1, 1980; 80 (3): 309-30.


The karyotype of the hexaploid species Xenopus ruwenzoriensis Fischberg and Kobel (Anura: Pipidae)., Tymowska J., Cytogenet Cell Genet. January 1, 1980; 27 (1): 39-44.


Chromosome banding in amphibia. IV. Differentiation of GC- and AT-rich chromosome regions in Anura., Schmid M., Chromosoma. January 1, 1980; 77 (1): 83-103.


An interaction between dorsal and ventral regions of the marginal zone in early amphibian embryos., Slack JM., J Embryol Exp Morphol. April 1, 1980; 56 283-99.


The association of primary embryonic organizer activity with the future dorsal side of amphibian eggs and early embryos., Malacinski GM., Dev Biol. June 15, 1980; 77 (2): 449-62.


The cellular basis of epiboly: an SEM study of deep-cell rearrangement during gastrulation in Xenopus laevis., Keller RE., J Embryol Exp Morphol. December 1, 1980; 60 201-34.


A comparison of the karyotype, constitutive heterochromatin, and nucleolar organizer regions of the new tetraploid species Xenopus epitropicalis Fischberg and Picard with those of Xenopus tropicalis Gray (Anura, Pipidae)., Tymowska J., Cytogenet Cell Genet. January 1, 1982; 34 (1-2): 149-57.


Silver positivity of the NORs during embryonic development of Xenopus laevis., De Capoa A., Exp Cell Res. September 1, 1983; 147 (2): 472-8.


Dorsalization and neural induction: properties of the organizer in Xenopus laevis., Smith JC., J Embryol Exp Morphol. December 1, 1983; 78 299-317.


Ultrastructural localization of nucleolar organizers during oogenesis in Xenopus laevis using a silver technique., Boloukhère M., J Cell Sci. January 1, 1984; 65 73-93.


Cell lineage analysis of neural induction: origins of cells forming the induced nervous system., Jacobson M., Dev Biol. March 1, 1984; 102 (1): 122-9.


Identification and localization of a novel nucleolar protein of high molecular weight by a monoclonal antibody., Schmidt-Zachmann MS., Exp Cell Res. August 1, 1984; 153 (2): 327-46.


Fibrillarin: a new protein of the nucleolus identified by autoimmune sera., Ochs RL., Biol Cell. January 1, 1985; 54 (2): 123-33.


Cell lineage labels and region-specific markers in the analysis of inductive interactions., Smith JC., J Embryol Exp Morphol. November 1, 1985; 89 Suppl 317-31.


Fate map for the 32-cell stage of Xenopus laevis., Dale L., Development. April 1, 1987; 99 (4): 527-51.                


Regional specification within the mesoderm of early embryos of Xenopus laevis., Dale L., Development. June 1, 1987; 100 (2): 279-95.


Regional differences of proteins in isolated cells of early embryos of Xenopus laevis., Miyata S., Cell Differ. June 1, 1987; 21 (1): 47-52.


A constitutive nucleolar protein identified as a member of the nucleoplasmin family., Schmidt-Zachmann MS., EMBO J. July 1, 1987; 6 (7): 1881-90.


Dorsal and ventral cells of cleavage-stage Xenopus embryos show the same ability to induce notochord and somite formation., Pierce KE., Dev Biol. April 1, 1988; 126 (2): 228-32.


The entire mesodermal mantle behaves as Spemann's organizer in dorsoanterior enhanced Xenopus laevis embryos., Kao KR., Dev Biol. May 1, 1988; 127 (1): 64-77.                      


DNase I sensitivity of ribosomal RNA genes in chromatin and nucleolar dominance in wheat., Thompson WF., J Mol Biol. December 5, 1988; 204 (3): 535-48.


Cortical rotation of the Xenopus egg: consequences for the anteroposterior pattern of embryonic dorsal development., Gerhart J., Development. January 1, 1989; 107 Suppl 37-51.


Inducing factors and the control of mesodermal pattern in Xenopus laevis., Smith JC., Development. January 1, 1989; 107 Suppl 149-59.


States of determination of single cells transplanted between 512-cell Xenopus embryos., Jacobson M., Dev Biol. January 1, 1989; 131 (1): 119-25.


Specification and Establishment of Dorsal-Ventral Polarity in Eggs and Embryos of Xenopus laevis: (body plan specification/dorsal-ventral polarity/Xenopus laevis/"antero-dorsal structure-forming activity")., Wakahara M., Dev Growth Differ. June 1, 1989; 31 (3): 197-207.


Hyperdorsoanterior embryos from Xenopus eggs treated with D2O., Scharf SR., Dev Biol. July 1, 1989; 134 (1): 175-88.


Variation within and between nucleolar organizer regions in Australian hylid frogs (Anura) shown by 18S + 28S in-situ hybridization., King M., Genetica. January 1, 1990; 80 (1): 17-29.


High resolution mapping of Xenopus laevis 5S and ribosomal RNA genes by EM in situ hybridization., Narayanswami S., Cytometry. January 1, 1990; 11 (1): 144-52.


Fibronectin-rich fibrillar extracellular matrix controls cell migration during amphibian gastrulation., Boucaut JC., Int J Dev Biol. March 1, 1990; 34 (1): 139-47.              


Mesoderm induction by fibroblast growth factor in early Xenopus development., Slack JM., Philos Trans R Soc Lond B Biol Sci. March 12, 1990; 327 (1239): 75-84.


Neural expression of the Xenopus homeobox gene Xhox3: evidence for a patterning neural signal that spreads through the ectoderm., Ruiz i Altaba A., Development. April 1, 1990; 108 (4): 595-604.


Hensen's node, but not other biological signallers, can induce supernumerary digits in the developing chick limb bud., Stocker KM., Rouxs Arch Dev Biol. May 1, 1990; 198 (7): 371-381.


The anterior extent of dorsal development of the Xenopus embryonic axis depends on the quantity of organizer in the late blastula., Stewart RM., Development. June 1, 1990; 109 (2): 363-72.

???pagination.result.page??? 1 2 3 4 5 6 7 8 9 10 11 ???pagination.result.next???