Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (6624) Expression Attributions Wiki
XB-ANAT-718

Papers associated with anatomical region (and cdh1)

Limit to papers also referencing gene:
Show all anatomical region papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

In vitro modeling of cranial placode differentiation: Recent advances, challenges, and perspectives., Griffin C., Dev Biol. February 1, 2024; 506 20-30.


TBC1D32 variants disrupt retinal ciliogenesis and cause retinitis pigmentosa., Bocquet B., JCI Insight. November 8, 2023; 8 (21):                                               


HMCES modulates the transcriptional regulation of nodal/activin and BMP signaling in mESCs., Liang T., Cell Rep. July 12, 2022; 40 (2): 111038.                              


The Wnt/PCP formin Daam1 drives cell-cell adhesion during nephron development., Krneta-Stankic V., Cell Rep. July 6, 2021; 36 (1): 109340.                                                      


Novel truncating mutations in CTNND1 cause a dominant craniofacial and cardiac syndrome., Alharatani R., Hum Mol Genet. July 21, 2020; 29 (11): 1900-1921.                  


PDGF-B: The missing piece in the mosaic of PDGF family role in craniofacial development., Corsinovi D., Dev Dyn. July 1, 2019; 248 (7): 603-612.            


Desmoplakin is required for epidermal integrity and morphogenesis in the Xenopus laevis embryo., Bharathan NK., Dev Biol. June 15, 2019; 450 (2): 115-131.                            


APC/C: current understanding and future perspectives., Yamano H., F1000Res. January 1, 2019; 8         


Gli2 is required for the induction and migration of Xenopus laevis neural crest., Cerrizuela S., Mech Dev. December 1, 2018; 154 219-239.                      


MMP14 Regulates Cranial Neural Crest Epithelial-to-Mesenchymal Transition and Migration., Garmon T., Dev Dyn. September 1, 2018; 247 (9): 1083-1092.            


The atypical mitogen-activated protein kinase ERK3 is essential for establishment of epithelial architecture., Takahashi C., J Biol Chem. June 1, 2018; 293 (22): 8342-8361.                                      


Cadherins function during the collective cell migration of Xenopus Cranial Neural Crest cells: revisiting the role of E-cadherin., Cousin H., Mech Dev. December 1, 2017; 148 79-88.    


Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells., Zhang Z., J Biol Chem. August 4, 2017; 292 (31): 12842-12859.        


Caspase-9 has a nonapoptotic function in Xenopus embryonic primitive blood formation., Tran HT., J Cell Sci. July 15, 2017; 130 (14): 2371-2381.                            


Lineage commitment of embryonic cells involves MEK1-dependent clearance of pluripotency regulator Ventx2., Scerbo P., Elife. June 27, 2017; 6                               


Actomyosin-generated tension on cadherin is similar between dividing and non-dividing epithelial cells in early Xenopus laevis embryos., Herbomel G., Sci Rep. March 22, 2017; 7 45058.                                    


E-cadherin is required for cranial neural crest migration in Xenopus laevis., Huang C., Dev Biol. March 15, 2016; 411 (2): 159-171.                        


Using frogs faces to dissect the mechanisms underlying human orofacial defects., Dickinson AJ., Semin Cell Dev Biol. March 1, 2016; 51 54-63.          


T-type Calcium Channel Regulation of Neural Tube Closure and EphrinA/EPHA Expression., Abdul-Wajid S., Cell Rep. October 27, 2015; 13 (4): 829-839.      


Paraxis is required for somite morphogenesis and differentiation in Xenopus laevis., Sánchez RS., Dev Dyn. August 1, 2015; 244 (8): 973-87.                              


Early development of the neural plate: new roles for apoptosis and for one of its main effectors caspase-3., Juraver-Geslin HA., Genesis. February 1, 2015; 53 (2): 203-24.          


Cell adhesion in zebrafish embryos is modulated by March 8., Kim MH., PLoS One. January 1, 2014; 9 (4): e94873.            


Migratory and adhesive properties of Xenopus laevis primordial germ cells in vitro., Dzementsei A., Biol Open. December 15, 2013; 2 (12): 1279-87.          


The Xenopus Tgfbi is required for embryogenesis through regulation of canonical Wnt signalling., Wang F., Dev Biol. July 1, 2013; 379 (1): 16-27.                            


The hypoxia factor Hif-1α controls neural crest chemotaxis and epithelial to mesenchymal transition., Barriga EH., J Cell Biol. May 27, 2013; 201 (5): 759-76.                  


Pax3 and Zic1 drive induction and differentiation of multipotent, migratory, and functional neural crest in Xenopus embryos., Milet C., Proc Natl Acad Sci U S A. April 2, 2013; 110 (14): 5528-33.                      


The Mix family of homeobox genes--key regulators of mesendoderm formation during vertebrate development., Pereira LA., Dev Biol. July 15, 2012; 367 (2): 163-77.        


fus/TLS orchestrates splicing of developmental regulators during gastrulation., Dichmann DS., Genes Dev. June 15, 2012; 26 (12): 1351-63.                        


Cadherin-dependent differential cell adhesion in Xenopus causes cell sorting in vitro but not in the embryo., Ninomiya H., J Cell Sci. April 15, 2012; 125 (Pt 8): 1877-83.              


Transcriptional activation by Oct4 is sufficient for the maintenance and induction of pluripotency., Hammachi F., Cell Rep. February 23, 2012; 1 (2): 99-109.                          


Foxi2 is an animally localized maternal mRNA in Xenopus, and an activator of the zygotic ectoderm activator Foxi1e., Cha SW., PLoS One. January 1, 2012; 7 (7): e41782.            


Analyzing the function of a hox gene: an evolutionary approach., Michaut L., Dev Growth Differ. December 1, 2011; 53 (9): 982-93.                  


Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro., Spence JR., Nature. February 3, 2011; 470 (7332): 105-9.      


β-catenin is a molecular switch that regulates transition of cell-cell adhesion to fusion., Takezawa Y., Sci Rep. January 1, 2011; 1 68.          


B1 SOX coordinate cell specification with patterning and morphogenesis in the early zebrafish embryo., Okuda Y., PLoS Genet. May 6, 2010; 6 (5): e1000936.                


Nectin-2 and N-cadherin interact through extracellular domains and induce apical accumulation of F-actin in apical constriction of Xenopus neural tube morphogenesis., Morita H., Development. April 1, 2010; 137 (8): 1315-25.                            


A protocadherin-cadherin-FLRT3 complex controls cell adhesion and morphogenesis., Chen X., PLoS One. December 22, 2009; 4 (12): e8411.                    


Xenopus delta-catenin is essential in early embryogenesis and is functionally linked to cadherins and small GTPases., Gu D., J Cell Sci. November 15, 2009; 122 (Pt 22): 4049-61.            


Sox9 is required for invagination of the otic placode in mice., Barrionuevo F., Dev Biol. May 1, 2008; 317 (1): 213-24.          


Early mitotic degradation of Nek2A depends on Cdc20-independent interaction with the APC/C., Hayes MJ., Nat Cell Biol. June 1, 2006; 8 (6): 607-14.


A constitutively activated mutant of galphaq down-regulates EP-cadherin expression and decreases adhesion between ectodermal cells at gastrulation., Rizzoti K., Mech Dev. August 1, 1998; 76 (1-2): 19-31.                


Anterior structural defects by misexpression of Xgbx-2 in early Xenopus embryos are associated with altered expression of cell adhesion molecules., King MW, King MW., Dev Dyn. August 1, 1998; 212 (4): 563-79.


Cadherin-mediated cell interactions are necessary for the activation of MyoD in Xenopus mesoderm., Holt CE., Proc Natl Acad Sci U S A. November 8, 1994; 91 (23): 10844-8.              


Molecular cloning of cDNA for XTCAD-1, a novel Xenopus cadherin, and its expression in adult tissues and embryos of Xenopus laevis., Tooi O., Biochim Biophys Acta. September 13, 1994; 1219 (1): 121-8.


Regulation of C-cadherin function during activin induced morphogenesis of Xenopus animal caps., Brieher WM., J Cell Biol. July 1, 1994; 126 (2): 519-27.


Selective disruption of E-cadherin function in early Xenopus embryos by a dominant negative mutant., Levine E., Development. April 1, 1994; 120 (4): 901-9.


A functional test for maternally inherited cadherin in Xenopus shows its importance in cell adhesion at the blastula stage., Heasman J., Development. January 1, 1994; 120 (1): 49-57.              


Sequence and distribution of Xenopus laevis E-cadherin transcripts., Broders F., Cell Adhes Commun. December 1, 1993; 1 (3): 265-77.


Catenins in Xenopus embryogenesis and their relation to the cadherin-mediated cell-cell adhesion system., Schneider S., Development. June 1, 1993; 118 (2): 629-40.                    


Regulation of embryonic cell adhesion by the cadherin cytoplasmic domain., Kintner C., Cell. April 17, 1992; 69 (2): 225-36.          

???pagination.result.page??? 1 2 ???pagination.result.next???