Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (472) Expression Attributions Wiki
XB-ANAT-719

Papers associated with medial (and tecta.2)

Limit to papers also referencing gene:
Show all medial papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Microvascular anatomy of the brain of the adult pipid frog, Xenopus laevis (Daudin): A scanning electron microscopic study of vascular corrosion casts., Lametschwandtner A., J Morphol. July 1, 2018; 279 (7): 950-969.                                                                                              


An NMDA receptor-dependent mechanism for subcellular segregation of sensory inputs in the tadpole optic tectum., Hamodi AS., Elife. November 23, 2016; 5                   


Expression patterns of Ephs and ephrins throughout retinotectal development in Xenopus laevis., Higenell V., Dev Neurobiol. April 1, 2012; 72 (4): 547-63.              


Nitric oxide in the retinotectal system: a signal but not a retrograde messenger during map refinement and segregation., Rentería RC., J Neurosci. August 15, 1999; 19 (16): 7066-76.          


Factors guiding regenerating retinotectal fibres in the frog Xenopus laevis., Fawcett JW., J Embryol Exp Morphol. December 1, 1985; 90 233-50.


Pathways of Xenopus optic fibres regenerating from normal and compound eyes under various conditions., Gaze RM., J Embryol Exp Morphol. February 1, 1983; 73 17-38.


Abnormal visual input leads to development of abnormal axon trajectories in frogs., Udin SB., Nature. January 27, 1983; 301 (5898): 336-8.


Regeneration of optic nerve fibres from a compound eye to both tecta in Xenopus: evidence relating to the state of specification of the eye and the tectum., Gaze RM., J Embryol Exp Morphol. December 1, 1980; 60 125-40.


Selection of appropriate medial branch of the optic tract by fibres of ventral retinal origin during development and in regeneration: an autoradiographic study in Xenopus., Straznicky C., J Embryol Exp Morphol. April 1, 1979; 50 253-67.

???pagination.result.page??? 1