Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1250) Expression Attributions Wiki
XB-ANAT-720

Papers associated with proximal (and slc5a1.2)

Limit to papers also referencing gene:
Show all proximal papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Xenopus Ssbp2 is required for embryonic pronephros morphogenesis and terminal differentiation., Cervino AS., Sci Rep. October 4, 2023; 13 (1): 16671.                                          


Na+-dependent intestinal glucose absorption mechanisms and its luminal Na+ homeostasis across metamorphosis from tadpoles to frogs., Ishizuka N., Am J Physiol Regul Integr Comp Physiol. May 1, 2023; 324 (5): R645-R655.              


The enpp4 ectonucleotidase regulates kidney patterning signalling networks in Xenopus embryos., Massé K., Commun Biol. October 7, 2021; 4 (1): 1158.                                


Ttc30a affects tubulin modifications in a model for ciliary chondrodysplasia with polycystic kidney disease., Getwan M., Proc Natl Acad Sci U S A. September 28, 2021; 118 (39):                                                   


Mutations in PRDM15 Are a Novel Cause of Galloway-Mowat Syndrome., Mann N., J Am Soc Nephrol. March 1, 2021; 32 (3): 580-596.    


Dynamin Binding Protein Is Required for Xenopus laevis Kidney Development., DeLay BD., Front Physiol. January 1, 2019; 10 143.                                


Alternative channels for urea in the inner medulla of the rat kidney., Nawata CM., Am J Physiol Renal Physiol. December 1, 2015; 309 (11): F916-24.


The Wnt/JNK signaling target gene alcam is required for embryonic kidney development., Cizelsky W., Development. May 1, 2014; 141 (10): 2064-74.          


Up-regulation of Na(+)-coupled glucose transporter SGLT1 by caveolin-1., Elvira B., Biochim Biophys Acta. November 1, 2013; 1828 (11): 2394-8.


Enhanced XAO: the ontology of Xenopus anatomy and development underpins more accurate annotation of gene expression and queries on Xenbase., Segerdell E., J Biomed Semantics. October 18, 2013; 4 (1): 31.      


Xenopus as a model system for the study of GOLPH2/GP73 function: Xenopus GOLPH2 is required for pronephros development., Li L., PLoS One. January 1, 2012; 7 (6): e38939.                                              


Inversin relays Frizzled-8 signals to promote proximal pronephros development., Lienkamp S., Proc Natl Acad Sci U S A. November 23, 2010; 107 (47): 20388-93.                          


Regulation of renal tubular glucose reabsorption by Akt2/PKBβ., Kempe DS., Am J Physiol Renal Physiol. May 1, 2010; 298 (5): F1113-7.


The miR-30 miRNA family regulates Xenopus pronephros development and targets the transcription factor Xlim1/Lhx1., Agrawal R., Development. December 1, 2009; 136 (23): 3927-36.              


A dual requirement for Iroquois genes during Xenopus kidney development., Alarcón P., Development. October 1, 2008; 135 (19): 3197-207.                            


Organization of the pronephric kidney revealed by large-scale gene expression mapping., Raciti D., Genome Biol. January 1, 2008; 9 (5): R84.                                                                        


Xenopus Bicaudal-C is required for the differentiation of the amphibian pronephros., Tran U., Dev Biol. July 1, 2007; 307 (1): 152-64.                  


Na+ -D-glucose cotransporter in the kidney of Leucoraja erinacea: molecular identification and intrarenal distribution., Althoff T., Am J Physiol Regul Integr Comp Physiol. June 1, 2007; 292 (6): R2391-9.


Synthesis of 18F-fluoroalkyl-beta-D-glucosides and their evaluation as tracers for sodium-dependent glucose transporters., de Groot TJ., J Nucl Med. December 1, 2003; 44 (12): 1973-81.


Rat kidney MAP17 induces cotransport of Na-mannose and Na-glucose in Xenopus laevis oocytes., Blasco T., Am J Physiol Renal Physiol. October 1, 2003; 285 (4): F799-810.


Cloning and characterization of a novel Na+-dependent glucose transporter (NaGLT1) in rat kidney., Horiba N., J Biol Chem. April 25, 2003; 278 (17): 14669-76.


Regulation of Na+/glucose cotransporters., Wright EM., J Exp Biol. January 1, 1997; 200 (Pt 2): 287-93.


Sugar binding to Na+/glucose cotransporters is determined by the carboxyl-terminal half of the protein., Panayotova-Heiermann M., J Biol Chem. April 26, 1996; 271 (17): 10029-34.


Molecular characteristics of Na(+)-coupled glucose transporters in adult and embryonic rat kidney., You G., J Biol Chem. December 8, 1995; 270 (49): 29365-71.


The high affinity Na+/glucose cotransporter. Re-evaluation of function and distribution of expression., Lee WS., J Biol Chem. April 22, 1994; 269 (16): 12032-9.


The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose., Kanai Y., J Clin Invest. January 1, 1994; 93 (1): 397-404.

???pagination.result.page??? 1