Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (763) Expression Attributions Wiki
XB-ANAT-727

Papers associated with vestibuloauditory system

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 4 5 6 7 8 9 10 11 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

[The induction capacity of dorsal lips tested by xenoplastic operations]., Faulhaber I., Wilhelm Roux Arch Entwickl Mech Org. December 1, 1970; 165 (4): 296-302.


Eyes transplanted to tadpole tails send axons rostrally in two spinal-cord tracts., Katz MJ., Science. January 13, 1978; 199 (4325): 202-4.


[Vestibular apparatus study of the toad, Xenopus laevis, and rats under prolonged weightlessness]., Vinnikov IaA., Zh Evol Biokhim Fiziol. January 1, 1980; 16 (6): 574-9.


[Development of the structure and stability of Mauthner's neurons in Xenopus laevis tadpoles on the implantation of additional auditory vesicles]., Moshkov DA., Ontogenez. January 1, 1982; 13 (6): 621-9.


Efferent neurons of the lateral-line system and the VIII cranial nerve in the brainstem of anurans. A comparative study using retrograde tracer methods., Will U., Cell Tissue Res. January 1, 1982; 225 (3): 673-85.


Biophysics of underwater hearing in anuran amphibians., Hetherington TE., J Exp Biol. June 1, 1982; 98 49-66.


Schooling behavior of tadpoles: a potential indicator of ototoxicity., Lum AM., Pharmacol Biochem Behav. August 1, 1982; 17 (2): 363-6.


Merkel cell distribution in the epidermis as determined by quinacrine fluorescence., Nurse CA., Cell Tissue Res. January 1, 1983; 228 (3): 511-24.


Development of the lateral line system in Xenopus laevis. I. Normal development and cell movement in the supraorbital system., Winklbauer R., J Embryol Exp Morphol. August 1, 1983; 76 265-81.


Regional specificity of glycoconjugates in Xenopus and axolotl embryos., Slack JM., J Embryol Exp Morphol. November 1, 1985; 89 Suppl 137-53.      


Neurotransmission in the inner ear., Klinke R., Hear Res. January 1, 1986; 22 235-43.


The ontogeny of androgen receptors in the CNS of Xenopus laevis frogs., Gorlick DL., Dev Biol. May 1, 1986; 391 (2): 193-200.


Prospective Neural Areas and Their Morphogenetic Movements during Neural Plate Formation of Xenopus Embryos. I. Development of Vegetal Half Embryos and Chimera Embryos: (developmental fates/cell marker, quinacrine/Xenopus embryo)., Suzuki AS., Dev Growth Differ. November 1, 1986; 28 (6): 519-529.


Fates of the blastomeres of the 16-cell stage Xenopus embryo., Moody SA., Dev Biol. February 1, 1987; 119 (2): 560-78.        


Fates of the blastomeres of the 32-cell-stage Xenopus embryo., Moody SA., Dev Biol. August 1, 1987; 122 (2): 300-19.      


Neuroactive substances in inner ear extracts., Sewell WF., J Neurosci. August 1, 1987; 7 (8): 2465-75.


A possible neurotransmitter role for CGRP in a hair-cell sensory organ., Adams JC., Dev Biol. September 1, 1987; 419 (1-2): 347-51.


Expression sequences and distribution of two primary cell adhesion molecules during embryonic development of Xenopus laevis., Levi G., J Cell Biol. November 1, 1987; 105 (5): 2359-72.                  


Neural crest development in the Xenopus laevis embryo, studied by interspecific transplantation and scanning electron microscopy., Sadaghiani B., Dev Biol. November 1, 1987; 124 (1): 91-110.


The organization of mesodermal pattern in Xenopus laevis: experiments using a Xenopus mesoderm-inducing factor., Cooke J., Development. December 1, 1987; 101 (4): 893-908.            


The restrictive effect of early exposure to lithium upon body pattern in Xenopus development, studied by quantitative anatomy and immunofluorescence., Cooke J., Development. January 1, 1988; 102 (1): 85-99.          


Somitomeres: mesodermal segments of vertebrate embryos., Jacobson AG., Development. January 1, 1988; 104 Suppl 209-20.  


Microinjection of synthetic Xhox-1A homeobox mRNA disrupts somite formation in developing Xenopus embryos., Harvey RP., Cell. June 3, 1988; 53 (5): 687-97.              


A whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus., Dent JA., Development. January 1, 1989; 105 (1): 61-74.                      


Development of the lateral line system in Xenopus., Winklbauer R., Prog Neurobiol. January 1, 1989; 32 (3): 181-206.


Cytokeratin filaments and desmosomes in the epithelioid cells of the perineurial and arachnoidal sheaths of some vertebrate species., Achtstätter T., Differentiation. May 1, 1989; 40 (2): 129-49.                        


Expression of an engrailed-related protein is induced in the anterior neural ectoderm of early Xenopus embryos., Brivanlou AH., Development. July 1, 1989; 106 (3): 611-7.                  


Autonomous death of amphibian (Xenopus laevis) cranial myotomes., Chung HM., J Exp Zool. September 1, 1989; 251 (3): 290-9.


An aberrant retinal pathway and visual centers in Xenopus tadpoles share a common cell surface molecule, A5 antigen., Fujisawa H., Dev Biol. October 1, 1989; 135 (2): 231-40.                


Experimental reorganization in the alar plate of the clawed toad, Xenopus laevis. I. Quantitative and qualitative effects of embryonic otocyst extirpation., Fritzsch B., Brain Res Dev Brain Res. January 1, 1990; 51 (1): 113-22.


Lithium can transform ear placodes of Xenopus into multiple otic vesicles connected by tubes., Gutknecht D., Naturwissenschaften. May 1, 1990; 77 (5): 235-7.


Expression of the N-myc proto-oncogene during the early development of Xenopus laevis., Vize PD., Development. November 1, 1990; 110 (3): 885-96.    


The distribution of E-cadherin during Xenopus laevis development., Levi G., Development. January 1, 1991; 111 (1): 159-69.                


Each otoconia polymorph has a protein unique to that polymorph., Pote KG., Comp Biochem Physiol B. January 1, 1991; 98 (2-3): 287-95.


Examining pattern formation in mouse, chicken and frog embryos with an En-specific antiserum., Davis CA., Development. February 1, 1991; 111 (2): 287-98.          


Changes in neural and lens competence in Xenopus ectoderm: evidence for an autonomous developmental timer., Servetnick M., Development. May 1, 1991; 112 (1): 177-88.                  


Hyaluronan as a propellant for epithelial movement: the development of semicircular canals in the inner ear of Xenopus., Haddon CM., Development. June 1, 1991; 112 (2): 541-50.                          


The switch from larval to adult globin gene expression in Xenopus laevis is mediated by erythroid cells from distinct compartments., Weber R., Development. August 1, 1991; 112 (4): 1021-9.              


Retinoic acid modifies the pattern of cell differentiation in the central nervous system of neurula stage Xenopus embryos., Ruiz i Altaba A., Development. August 1, 1991; 112 (4): 945-58.                


EP-cadherin in muscles and epithelia of Xenopus laevis embryos., Levi G., Development. December 1, 1991; 113 (4): 1335-44.              


Retinoic acid causes abnormal development and segmental patterning of the anterior hindbrain in Xenopus embryos., Papalopulu N., Development. December 1, 1991; 113 (4): 1145-58.                          


Retinoic acid induces changes in the localization of homeobox proteins in the antero-posterior axis of Xenopus laevis embryos., López SL., Mech Dev. February 1, 1992; 36 (3): 153-64.          


Structure-activity relations of amiloride and its analogues in blocking the mechanosensitive channel in Xenopus oocytes., Lane JW., Br J Pharmacol. June 1, 1992; 106 (2): 283-6.


Developmental expression of the Xenopus int-2 (FGF-3) gene: activation by mesodermal and neural induction., Tannahill D., Development. July 1, 1992; 115 (3): 695-702.


N-cadherin transcripts in Xenopus laevis from early tailbud to tadpole., Simonneau L., Dev Dyn. August 1, 1992; 194 (4): 247-60.                


The armadillo homologs beta-catenin and plakoglobin are differentially expressed during early development of Xenopus laevis., DeMarais AA., Dev Biol. October 1, 1992; 153 (2): 337-46.          


Spatially restricted expression of fibroblast growth factor receptor-2 during Xenopus development., Friesel R., Development. December 1, 1992; 116 (4): 1051-8.


Interactions between Xwnt-8 and Spemann organizer signaling pathways generate dorsoventral pattern in the embryonic mesoderm of Xenopus., Christian JL., Genes Dev. January 1, 1993; 7 (1): 13-28.              


Overlapping expression of Xwnt-3A and Xwnt-1 in neural tissue of Xenopus laevis embryos., Wolda SL., Dev Biol. January 1, 1993; 155 (1): 46-57.            


Xenopus Distal-less related homeobox genes are expressed in the developing forebrain and are induced by planar signals., Papalopulu N., Development. March 1, 1993; 117 (3): 961-75.          

???pagination.result.page??? 1 2 3 4 5 6 7 8 9 10 11 ???pagination.result.next???