Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (763) Expression Attributions Wiki
XB-ANAT-727

Papers associated with vestibuloauditory system (and neurod1)

Limit to papers also referencing gene:
Show all vestibuloauditory system papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Fzd3 Expression Within Inner Ear Afferent Neurons Is Necessary for Central Pathfinding., Stoner ZA., Front Neurosci. January 1, 2021; 15 779871.


Six1 and Irx1 have reciprocal interactions during cranial placode and otic vesicle formation., Sullivan CH., Dev Biol. February 1, 2019; 446 (1): 68-79.                      


Hmga2 is required for neural crest cell specification in Xenopus laevis., Macrì S., Dev Biol. March 1, 2016; 411 (1): 25-37.                                        


Opportunities and limits of the one gene approach: the ability of Atoh1 to differentiate and maintain hair cells depends on the molecular context., Jahan I., Front Cell Neurosci. February 5, 2015; 9 26.  


Sp8 regulates inner ear development., Chung HA., Proc Natl Acad Sci U S A. April 29, 2014; 111 (17): 6329-34.                                                    


Developmental expression of Pitx2c in Xenopus trigeminal and profundal placodes., Jeong YH., Int J Dev Biol. January 1, 2014; 58 (9): 701-4.        


PAPC and the Wnt5a/Ror2 pathway control the invagination of the otic placode in Xenopus., Jung B., BMC Dev Biol. June 10, 2011; 11 36.                          


EBF factors drive expression of multiple classes of target genes governing neuronal development., Green YS., Neural Dev. April 30, 2011; 6 19.                                                          


Yes-associated protein 65 (YAP) expands neural progenitors and regulates Pax3 expression in the neural plate border zone., Gee ST., PLoS One. January 1, 2011; 6 (6): e20309.                  


Characterization of new otic enhancers of the pou3f4 gene reveal distinct signaling pathway regulation and spatio-temporal patterns., Robert-Moreno À., PLoS One. December 31, 2010; 5 (12): e15907.              


EYA1 mutations associated with the branchio-oto-renal syndrome result in defective otic development in Xenopus laevis., Li Y., Biol Cell. February 17, 2010; 102 (5): 277-92.                  


Eya1 and Six1 promote neurogenesis in the cranial placodes in a SoxB1-dependent fashion., Schlosser G., Dev Biol. August 1, 2008; 320 (1): 199-214.                  


Development of the retinotectal system in the direct-developing frog Eleutherodactylus coqui in comparison with other anurans., Schlosser G., Front Zool. June 23, 2008; 5 9.              


Neurogenin and NeuroD direct transcriptional targets and their regulatory enhancers., Seo S., EMBO J. December 12, 2007; 26 (24): 5093-108.  


Regulation of otic vesicle and hair cell stereocilia morphogenesis by Ena/VASP-like (Evl) in Xenopus., Wanner SJ., J Cell Sci. August 1, 2007; 120 (Pt 15): 2641-51.          


Characterization and function of the bHLH-O protein XHes2: insight into the mechanisms controlling retinal cell fate decision., Sölter M., Development. October 1, 2006; 133 (20): 4097-108.                


Expression of synaptic vesicle two-related protein SVOP in the developing nervous system of Xenopus laevis., Logan MA., Dev Dyn. November 1, 2005; 234 (3): 802-7.      


Inhibition of neurogenesis by SRp38, a neuroD-regulated RNA-binding protein., Liu KJ, Liu KJ., Development. April 1, 2005; 132 (7): 1511-23.                


NeuroD: the predicted and the surprising., Chae JH., Mol Cells. December 31, 2004; 18 (3): 271-88.


Cloning and characterization of Xenopus Id4 reveals differing roles for Id genes., Liu KJ, Liu KJ., Dev Biol. December 15, 2003; 264 (2): 339-51.                      


A restrictive role for Hedgehog signalling during otic specification in Xenopus., Koebernick K., Dev Biol. August 15, 2003; 260 (2): 325-38.              


A screen for co-factors of Six3., Tessmar K., Mech Dev. September 1, 2002; 117 (1-2): 103-13.                  


The secreted glycoprotein Noelin-1 promotes neurogenesis in Xenopus., Moreno TA., Dev Biol. December 15, 2001; 240 (2): 340-60.                  


Xenopus cadherin-11 restrains cranial neural crest migration and influences neural crest specification., Borchers A., Development. August 1, 2001; 128 (16): 3049-60.                      


Xebf3 is a regulator of neuronal differentiation during primary neurogenesis in Xenopus., Pozzoli O., Dev Biol. May 15, 2001; 233 (2): 495-512.            


Hes6 acts in a positive feedback loop with the neurogenins to promote neuronal differentiation., Koyano-Nakagawa N., Development. October 1, 2000; 127 (19): 4203-16.              


Primary neuronal differentiation in Xenopus embryos is linked to the beta(3) subunit of the sodium pump., Messenger NJ., Dev Biol. April 15, 2000; 220 (2): 168-82.                  


Development of neurogenic placodes in Xenopus laevis., Schlosser G., J Comp Neurol. March 6, 2000; 418 (2): 121-46.


Loss of ectodermal competence for lateral line placode formation in the direct developing frog Eleutherodactylus coqui., Schlosser G., Dev Biol. September 15, 1999; 213 (2): 354-69.                  


XATH-1, a vertebrate homolog of Drosophila atonal, induces a neuronal differentiation within ectodermal progenitors., Kim P., Dev Biol. July 1, 1997; 187 (1): 1-12.            


A role for Xenopus Gli-type zinc finger proteins in the early embryonic patterning of mesoderm and neuroectoderm., Marine JC., Mech Dev. May 1, 1997; 63 (2): 211-25.              

???pagination.result.page??? 1