Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (475) Expression Attributions Wiki
XB-ANAT-728

Papers associated with olfactory system

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 4 5 6 7 8 9 10 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Type 2 vomeronasal receptor expression in the olfactory organ of African lungfish, Protopterus annectens., Nakamuta S., Cell Tissue Res. November 30, 2024; 398 (2): 79-91.


Adeno-associated viral tools to trace neural development and connectivity across amphibians., Jaeger ECB., Dev Cell. November 25, 2024;   


Novel laser model of optic nerve transection provides valuable insights about the dynamics of optic nerve regeneration., Moulin C., Sci Rep. November 9, 2024; 14 (1): 27412.   


S100Z is expressed in a lateral subpopulation of olfactory receptor neurons in the main olfactory system of Xenopus laevis., Kahl M., Dev Neurobiol. April 1, 2024; 84 (2): 59-73.   


In vitro modeling of cranial placode differentiation: Recent advances, challenges, and perspectives., Griffin C., Dev Biol. February 1, 2024; 506 20-30.


Developmental expression of peroxiredoxin gene family in early embryonic development of Xenopus tropicalis., Zhong L., Gene Expr Patterns. December 1, 2023; 50 119345.   


Xenopus Ssbp2 is required for embryonic pronephros morphogenesis and terminal differentiation., Cervino AS., Sci Rep. October 4, 2023; 13 (1): 16671.   


Functional odor map heterogeneity is based on multifaceted glomerular connectivity in larval Xenopus olfactory bulb., Offner T., iScience. September 15, 2023; 26 (9): 107518.   


Type 1 vomeronasal receptors expressed in the olfactory organs of two African lungfish, Protopterus annectens and Protopterus amphibius., Nakamuta S., J Comp Neurol. January 1, 2023; 531 (1): 116-131.


Distinct interhemispheric connectivity at the level of the olfactory bulb emerges during Xenopus laevis metamorphosis., Weiss L., Cell Tissue Res. December 1, 2021; 386 (3): 491-511.   


Resolving different presynaptic activity patterns within single olfactory glomeruli of Xenopus laevis larvae., Topci R., Sci Rep. July 9, 2021; 11 (1): 14258.   


Axon terminals control endolysosome diffusion to support synaptic remodelling., Terni B., Life Sci Alliance. July 5, 2021; 4 (8):   


The role of cell lineage in the development of neuronal circuitry and function., Hartenstein V., Dev Biol. July 1, 2021; 475 165-180.


Olfactory subsystems in the peripheral olfactory organ of anuran amphibians., Jungblut LD., Cell Tissue Res. January 1, 2021; 383 (1): 289-299.


Dynamic expression of MMP28 during cranial morphogenesis., Gouignard N., Philos Trans R Soc Lond B Biol Sci. October 12, 2020; 375 (1809): 20190559.


Nonanal modulates oviposition preference in female Helicoverpa assulta (Lepidoptera: Noctuidae) via the activation of peripheral neurons., Wang C., Pest Manag Sci. September 1, 2020; 76 (9): 3159-3167.   


Embryonic Epidermal Lectins in Three Amphibian Species, Rana ornativentris, Bufo japonicus formosus, and Cynops pyrrhogaster., Nagata S., Zoolog Sci. August 1, 2020; 37 (4): 338-345.   


The neurodevelopmental disorder risk gene DYRK1A is required for ciliogenesis and control of brain size in Xenopus embryos., Willsey HR., Development. June 22, 2020; 147 (21):   


Chemical modification of proteins by insertion of synthetic peptides using tandem protein trans-splicing., Khoo KK., Nat Commun. May 8, 2020; 11 (1): 2284.   


Differential expression of foxo genes during embryonic development and in adult tissues of Xenopus tropicalis., Zheng L., Gene Expr Patterns. January 1, 2020; 35 119091.   


Evolution of V1R pheromone receptor genes in vertebrates: diversity and commonality., Nikaido M., Genes Genet Syst. October 30, 2019; 94 (4): 141-149.   


Bcl11b controls odorant receptor class choice in mice., Enomoto T., Commun Biol. January 1, 2019; 2 296.   


Tight temporal coupling between synaptic rewiring of olfactory glomeruli and the emergence of odor-guided behavior in Xenopus tadpoles., Terni B., J Comp Neurol. December 1, 2017; 525 (17): 3769-3783.


Neuronal degeneration and regeneration induced by axotomy in the olfactory epithelium of Xenopus laevis., Cervino AS., Dev Neurobiol. November 1, 2017; 77 (11): 1308-1320.   


The RNF146 E3 ubiquitin ligase is required for the control of Wnt signaling and body pattern formation in Xenopus., Zhu X., Mech Dev. October 1, 2017; 147 28-36.   


Quantitative comparative analysis of the nasal chemosensory organs of anurans during larval development and metamorphosis highlights the relative importance of chemosensory subsystems in the group., Jungblut LD., J Morphol. September 1, 2017; 278 (9): 1208-1219.


Functional Reintegration of Sensory Neurons and Transitional Dendritic Reduction of Mitral/Tufted Cells during Injury-Induced Recovery of the Larval Xenopus Olfactory Circuit., Hawkins SJ., Front Cell Neurosci. July 21, 2017; 11 380.   


Pattern of Neurogenesis and Identification of Neuronal Progenitor Subtypes during Pallial Development in Xenopus laevis., Moreno N., Front Neuroanat. March 27, 2017; 11 24.   


Neural regeneration dynamics of Xenopus laevis olfactory epithelium after zinc sulfate-induced damage., Frontera JL., J Chem Neuroanat. November 1, 2016; 77 1-9.


Metabolomic approach for identifying and visualizing molecular tissue markers in tadpoles of Xenopus tropicalis by mass spectrometry imaging., Goto-Inoue N., Biol Open. September 15, 2016; 5 (9): 1252-9.   


Endocannabinoid signaling enhances visual responses through modulation of intracellular chloride levels in retinal ganglion cells., Miraucourt LS., Elife. August 8, 2016; 5   


Recording Temperature-induced Neuronal Activity through Monitoring Calcium Changes in the Olfactory Bulb of Xenopus laevis., Brinkmann A., J Vis Exp. June 3, 2016; (112):   


Metamorphic remodeling of the olfactory organ of the African clawed frog, Xenopus laevis., Dittrich K., J Comp Neurol. April 1, 2016; 524 (5): 986-98.   


Frog Virus 3 dissemination in the brain of tadpoles, but not in adult Xenopus, involves blood brain barrier dysfunction., De Jesús Andino F., Sci Rep. January 22, 2016; 6 22508.   


Noggin 1 overexpression in retinal progenitors affects bipolar cell generation., Messina A., Int J Dev Biol. January 1, 2016; 60 (4-6): 151-7.   


Ca(2+)-BK channel clusters in olfactory receptor neurons and their role in odour coding., Bao G., Eur J Neurosci. December 1, 2015; 42 (11): 2985-95.   


In Vivo Study of Dynamics and Stability of Dendritic Spines on Olfactory Bulb Interneurons in Xenopus laevis Tadpoles., Huang YB., PLoS One. October 20, 2015; 10 (10): e0140752.   


Evolutionary Conservation of the Early Axon Scaffold in the Vertebrate Brain., Ware M., Dev Dyn. October 1, 2015; 244 (10): 1202-14.   


Dual processing of sulfated steroids in the olfactory system of an anuran amphibian., Sansone A., Front Cell Neurosci. September 23, 2015; 9 373.   


Ferritin H subunit gene is specifically expressed in melanophore precursor-derived white pigment cells in which reflecting platelets are formed from stage II melanosomes in the periodic albino mutant of Xenopus laevis., Fukuzawa T., Cell Tissue Res. September 1, 2015; 361 (3): 733-44.   


An endocannabinoid system is present in the mouse olfactory epithelium but does not modulate olfaction., Hutch CR., Neuroscience. August 6, 2015; 300 539-53.


Vesicular stomatitis virus enables gene transfer and transsynaptic tracing in a wide range of organisms., Mundell NA., J Comp Neurol. August 1, 2015; 523 (11): 1639-63.   


Integrating temperature with odor processing in the olfactory bulb., Kludt E., J Neurosci. May 20, 2015; 35 (20): 7892-902.


The emergence of Pax7-expressing muscle stem cells during vertebrate head muscle development., Nogueira JM., Front Aging Neurosci. May 19, 2015; 7 62.   


Endogenous gradients of resting potential instructively pattern embryonic neural tissue via Notch signaling and regulation of proliferation., Pai VP., J Neurosci. March 11, 2015; 35 (10): 4366-85.   


Brain-derived neurotrophic factor (BDNF) expression in normal and regenerating olfactory epithelium of Xenopus laevis., Frontera JL., Ann Anat. March 1, 2015; 198 41-8.


Opportunities and limits of the one gene approach: the ability of Atoh1 to differentiate and maintain hair cells depends on the molecular context., Jahan I., Front Cell Neurosci. February 5, 2015; 9 26.   


Microarray identification of novel genes downstream of Six1, a critical factor in cranial placode, somite, and kidney development., Yan B., Dev Dyn. February 1, 2015; 244 (2): 181-210.   


A gene expression map of the larval Xenopus laevis head reveals developmental changes underlying the evolution of new skeletal elements., Square T., Dev Biol. January 15, 2015; 397 (2): 293-304.   


Methylmercury exposure during early Xenopus laevis development affects cell proliferation and death but not neural progenitor specification., Huyck RW., Neurotoxicol Teratol. January 1, 2015; 47 102-13.   

???pagination.result.page??? 1 2 3 4 5 6 7 8 9 10 ???pagination.result.next???