Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Stage Literature (50) Attributions Wiki
XB-STAGE-74

Papers associated with NF stage 60

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Xenopus Limb bud morphogenesis., Keenan SR, Beck CW., Dev Dyn. March 1, 2016; 245 (3): 233-43.            


Ouro proteins are not essential to tail regression during Xenopus tropicalis metamorphosis., Nakai Y, Nakajima K, Robert J, Yaoita Y., Genes Cells. March 1, 2016; 21 (3): 275-86.          


Astrocytes phagocytose focal dystrophies from shortening myelin segments in the optic nerve of Xenopus laevis at metamorphosis., Mills EA, Davis CH, Bushong EA, Boassa D, Kim KY, Ellisman MH, Marsh-Armstrong N., Proc Natl Acad Sci U S A. August 18, 2015; 112 (33): 10509-14.                                          


Generation of BAC transgenic tadpoles enabling live imaging of motoneurons by using the urotensin II-related peptide (ust2b) gene as a driver., Bougerol M, Auradé F, Lambert FM, Le Ray D, Combes D, Thoby-Brisson M, Relaix F, Pollet N, Tostivint H., PLoS One. February 6, 2015; 10 (2): e0117370.                            


Erythropoietin protects red blood cells from TRAIL1-induced cell death during red blood cell transition in Xenopus laevis., Tamura K, Takamatsu N, Ito M., Mol Cell Biochem. January 1, 2015; 398 (1-2): 73-81.


Molecular and cytological analyses reveal distinct transformations of intestinal epithelial cells during Xenopus metamorphosis., Okada M, Wen L, Miller TC, Su D, Shi YB., Cell Biosci. January 1, 2015; 5 74.                                


Scar-free wound healing and regeneration in amphibians: Immunological influences on regenerative success., Godwin JW, Rosenthal N., Differentiation. January 1, 2014; .      


Thyroid hormone-regulated Wnt5a/Ror2 signaling is essential for dedifferentiation of larval epithelial cells into adult stem cells in the Xenopus laevis intestine., Ishizuya-Oka A, Kajita M, Hasebe T., PLoS One. January 1, 2014; 9 (9): e107611.                            


The structure and development of Xenopus laevis cornea., Hu W, Haamedi N, Lee J, Kinoshita T, Ohnuma S., Exp Eye Res. November 1, 2013; 116 109-28.                            


Thyroid hormone-induced cell-cell interactions are required for the development of adult intestinal stem cells., Hasebe T, Fu L, Miller TC, Zhang Y, Zhang Y, Shi YB, Ishizuya-Oka A., Cell Biosci. April 1, 2013; 3 (1): 18.    


Pattern of calbindin-D28k and calretinin immunoreactivity in the brain of Xenopus laevis during embryonic and larval development., Morona R, González A., J Comp Neurol. January 1, 2013; 521 (1): 79-108.                  


Spatio-temporal expression profile of stem cell-associated gene LGR5 in the intestine during thyroid hormone-dependent metamorphosis in Xenopus laevis., Sun G, Hasebe T, Fujimoto K, Lu R, Fu L, Matsuda H, Kajita M, Ishizuya-Oka A, Shi YB., PLoS One. October 22, 2010; 5 (10): e13605.                    


Cranial osteogenesis and suture morphology in Xenopus laevis: a unique model system for studying craniofacial development., Slater BJ, Liu KJ, Kwan MD, Quarto N, Longaker MT., PLoS One. January 1, 2009; 4 (1): e3914.                  


The aromatase inhibitor fadrozole and the 5-reductase inhibitor finasteride affect gonadal differentiation and gene expression in the frog Silurana tropicalis., Duarte-Guterman P, Langlois VS, Hodgkinson K, Pauli BD, Cooke GM, Wade MG, Trudeau VL., Sex Dev. January 1, 2009; 3 (6): 333-41.


Molecular cloning of two isoforms of Xenopus (Silurana) tropicalis estrogen receptor mRNA and their expression during development., Takase M, Iguchi T., Biochim Biophys Acta. March 1, 2007; 1769 (3): 172-81.


Roles of Matrix Metalloproteinases and ECM Remodeling during Thyroid Hormone-Dependent Intestinal Metamorphosis in Xenopus laevis., Fu L, Hasebe T, Ishizuya-Oka A, Shi YB., Organogenesis. January 1, 2007; 3 (1): 14-9.        


Expression of sodium-iodide symporter mRNA in the thyroid gland of Xenopus laevis tadpoles: developmental expression, effects of antithyroidal compounds, and regulation by TSH., Opitz R, Trubiroha A, Lorenz C, Lutz I, Hartmann S, Blank T, Braunbeck T, Kloas W., J Endocrinol. July 1, 2006; 190 (1): 157-70.


Specific expression of olfactory binding protein in the aerial olfactory cavity of adult and developing Xenopus., Millery J, Briand L, Bézirard V, Blon F, Fenech C, Richard-Parpaillon L, Quennedey B, Pernollet JC, Gascuel J., Eur J Neurosci. September 1, 2005; 22 (6): 1389-99.              


Spatio-temporal regulation and cleavage by matrix metalloproteinase stromelysin-3 implicate a role for laminin receptor in intestinal remodeling during Xenopus laevis metamorphosis., Amano T, Fu L, Marshak A, Kwak O, Shi YB, Shi YB., Dev Dyn. September 1, 2005; 234 (1): 190-200.              


Thyroid hormone controls the development of connections between the spinal cord and limbs during Xenopus laevis metamorphosis., Marsh-Armstrong N, Cai L, Brown DD., Proc Natl Acad Sci U S A. January 6, 2004; 101 (1): 165-70.          


Intercalary and supernumerary regeneration in the limbs of the frog, Xenopus laevis., Shimizu-Nishikawa K, Takahashi J, Nishikawa A., Dev Dyn. August 1, 2003; 227 (4): 563-72.              


Thyroid hormone-upregulated expression of Musashi-1 is specific for progenitor cells of the adult epithelium during amphibian gastrointestinal remodeling., Ishizuya-Oka A, Shimizu K, Sakakibara S, Okano H, Ueda S., J Cell Sci. August 1, 2003; 116 (Pt 15): 3157-64.          


Requirement for matrix metalloproteinase stromelysin-3 in cell migration and apoptosis during tissue remodeling in Xenopus laevis., Ishizuya-Oka A, Li Q, Amano T, Damjanovski S, Ueda S, Shi YB., J Cell Biol. September 4, 2000; 150 (5): 1177-88.                      


Preliminary validation of a short-term morphological assay to evaluate adverse effects on amphibian metamorphosis and thyroid function using Xenopus laevis., Fort DJ, Rogers RL, Morgan LA, Miller MF, Clark PA, White JA, Paul RR, Stover EL., J Appl Toxicol. January 1, 2000; 20 (5): 419-25.


Metamorphosis is inhibited in transgenic Xenopus laevis tadpoles that overexpress type III deiodinase., Huang H, Marsh-Armstrong N, Brown DD., Proc Natl Acad Sci U S A. February 2, 1999; 96 (3): 962-7.            


Metamorphosis-associated and region-specific expression of calbindin gene in the posterior intestinal epithelium of Xenopus laevis larva., Amano T, Noro N, Kawabata H, Kobayashi Y, Yoshizato K., Dev Growth Differ. April 1, 1998; 40 (2): 177-88.                


Anteroposterior gradient of epithelial transformation during amphibian intestinal remodeling: immunohistochemical detection of intestinal fatty acid-binding protein., Ishizuya-Oka A, Ueda S, Damjanovski S, Li Q, Liang VC, Shi YB, Shi YB., Dev Biol. December 1, 1997; 192 (1): 149-61.                  


Ets-1 and Ets-2 proto-oncogenes exhibit differential and restricted expression patterns during Xenopus laevis oogenesis and embryogenesis., Meyer D, Durliat M, Senan F, Wolff M, Andre M, Hourdry J, Remy P., Int J Dev Biol. August 1, 1997; 41 (4): 607-20.                                      


Cloning and characterization of the vitamin D receptor from Xenopus laevis., Li YC, Bergwitz C, Jüppner H, Demay MB., Endocrinology. June 1, 1997; 138 (6): 2347-53.


Regionally regulated conversion of protein expression in the skin during anuran metamorphosis., Kobayashi H, Sato H, Yoshizato K., J Exp Zool. February 15, 1996; 274 (3): 187-92.


Xenopus sonic hedgehog as a potential morphogen during embryogenesis and thyroid hormone-dependent metamorphosis., Stolow MA, Shi YB, Shi YB., Nucleic Acids Res. July 11, 1995; 23 (13): 2555-62.                  


Expression of magainin antimicrobial peptide genes in the developing granular glands of Xenopus skin and induction by thyroid hormone., Reilly DS, Tomassini N, Zasloff M., Dev Biol. March 1, 1994; 162 (1): 123-33.          


Thyroid hormone-dependent regulation of the intestinal fatty acid-binding protein gene during amphibian metamorphosis., Shi YB, Shi YB, Hayes WP., Dev Biol. January 1, 1994; 161 (1): 48-58.              


[Ontogeny of the pronephros and mesonephros in the South African clawed frog, Xenopus laevis Daudin, with special reference to the appearance and movement of the renin-immunopositive cells]., Tahara T, Ogawa K, Taniguchi K., Jikken Dobutsu. October 1, 1993; 42 (4): 601-10.


Changes in lectin-binding pattern in the digestive tract of Xenopus laevis during metamorphosis. II. Small intestine., Ishizuya-Oka A, Shimozawa A., J Morphol. July 1, 1990; 205 (1): 9-15.


Changes in lectin-binding pattern in the digestive tract of Xenopus laevis during metamorphosis. I. Gastric region., Ishizuya-Oka A, Shimozawa A., J Morphol. July 1, 1990; 205 (1): 1-8.


B-lymphocyte populations in Xenopus laevis., Hadji-Azimi I, Coosemans V, Canicatti C., Dev Comp Immunol. January 1, 1990; 14 (1): 69-84.


Observation on the basal lamina of duodenal mesothelial cells during metamorphosis of Xenopus laevis., Murata E, Fujita K, Akita M, Kaneko K., Okajimas Folia Anat Jpn. December 1, 1989; 66 (5): 255-63.


Changing patterns of binocular visual connections in the intertectal system during development of the frog, Xenopus laevis. I. Normal maturational changes in response to changing binocular geometry., Grant S, Keating MJ., Exp Brain Res. January 1, 1989; 75 (1): 99-116.


The expression of epidermal antigens in Xenopus laevis., Itoh K, Yamashita A, Kubota HY., Development. September 1, 1988; 104 (1): 1-14.                        


Ultrastructural changes in the intestinal connective tissue of Xenopus laevis during metamorphosis., Ishizuya-Oka A, Shimozawa A., J Morphol. July 1, 1987; 193 (1): 13-22.


The development of the static vestibulo-ocular reflex in the southern clawed toad, Xenopus laevis. I. Intact animals., Horn E, Lang HG, Rayer B., J Comp Physiol A. December 1, 1986; 159 (6): 869-78.


[Analytical study of Xenopus hindlimb regenerate with special reference to muscle regeneration]., Fujikura K, Tabuchi M, Shimoda Y, Inoue S., Jikken Dobutsu. October 1, 1986; 35 (4): 421-32.


The ontogeny of androgen receptors in the CNS of Xenopus laevis frogs., Gorlick DL, Kelley DB., Dev Biol. May 1, 1986; 391 (2): 193-200.


Comparison of the effects of vitamin A on limb development and regeneration in Xenopus laevis tadpoles., Scadding SR, Maden M., J Embryol Exp Morphol. February 1, 1986; 91 35-53.        


The development of the nucleus isthmi in Xenopus laevis. I. Cell genesis and the formation of connections with the tectum., Udin SB, Fisher MD., J Comp Neurol. February 1, 1985; 232 (1): 25-35.


Temporo-nasal asymmetry in the accretion of retinal ganglion cells in late larval and postmetamorphic Xenopus., Tay D, Hiscock J, Straznicky C., Anat Embryol (Berl). January 1, 1982; 164 (1): 75-83.


Cerebrospinal fluid-contacting neurons and other somatostatin-immunoreactive perikarya in brains of tadpoles of Xenopus laevis., Blähser S, Vigh-Teichmann I, Ueck M., Cell Tissue Res. January 1, 1982; 224 (3): 693-7.


Development of axosomatic synapses of the Xenopus spinal cord with special reference to subsurface cisterns and C-type synapses., Watanabe H., J Comp Neurol. August 10, 1981; 200 (3): 323-8.


Myogenesis in the trunk and leg during development of the tadpole of Xenopus laevis (Daudin 1802)., Muntz L., J Embryol Exp Morphol. June 1, 1975; 33 (3): 757-74.

???pagination.result.page??? 1