Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (460) Expression Attributions Wiki
XB-ANAT-762

Papers associated with retinal neural layer

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 4 5 6 7 8 9 10 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Differential growth of the neural retina in Xenopus laevis larvae., Hollyfield JG., Dev Biol. February 1, 1971; 24 (2): 264-86.


Optic nerve fibre counts and retinal ganglion cell counts during development of Xenopus laevis (Daudin)., Wilson MA., Q J Exp Physiol Cogn Med Sci. April 1, 1971; 56 (2): 83-91.


A polar co-ordinate system for positional information in the vertebrate neural retina., McDonald N., J Theor Biol. November 7, 1977; 69 (1): 153-65.


Effects of 5-bromodeoxyuridine on development of Mauthner's neuron and neural retina of Xenopus laevis embryos., Dribin LB., Dev Biol. July 21, 1978; 150 (3): 543-7.


The formation of photoreceptor synapses in the retina of larval Xenopus., Chen F., J Neurocytol. December 1, 1978; 7 (6): 721-40.


The emergence, localization and maturation of neurotransmitter systems during development of the retina in Xenopus laevis. I. Gamma aminobutyric acid., Hollyfield JG., J Comp Neurol. December 15, 1979; 188 (4): 587-98.


Specification of retinotectal connexions during development of the toad Xenopus laevis., Sharma SC., J Embryol Exp Morphol. February 1, 1980; 55 77-92.


Ontogeny of the retina and optic nerve in Xenopus laevis. II. Ontogeny of the optic fiber pattern in the retina., Grant P., J Comp Neurol. February 15, 1980; 189 (4): 671-98.


Cell movements in Xenopus eye development., Holt C., Nature. October 30, 1980; 287 (5785): 850-2.


Synapse formation and modification between distal retinal neurons in larval and juvenile Xenopus., Witkovsky P., Proc R Soc Lond B Biol Sci. March 11, 1981; 211 (1184): 373-89.


Retinal ganglion cell death and regeneration of abnormal retinotectal projections after removal of a segment of optic nerve in Xenopus tadpoles., Beazley LD., Dev Biol. July 15, 1981; 85 (1): 164-70.


Light stimulates the incorporation of inositol into phosphatidylinositol in the retina., Anderson RE., Biochim Biophys Acta. September 24, 1981; 665 (3): 619-22.


A freeze-fracture study of synaptogenesis in the distal retina of larval Xenopus., Nagy AR., J Neurocytol. December 1, 1981; 10 (6): 897-919.


The role of neural retina in lens regeneration from cornea in larval Xenopus laevis., Filoni S., Acta Embryol Morphol Exp. July 1, 1982; 3 (1): 15-28.


Transport and phosphorylation of 2-deoxy-D-glucose by amphibian retina. Effects of light and darkness., Witkovsky P., J Gen Physiol. August 1, 1982; 80 (2): 173-90.


Rod and cone inputs to bipolar and horizontal cells of the Xenopus retina., Witkovsky P., Vision Res. January 1, 1983; 23 (11): 1251-8.


Intracellular recording from identified photoreceptors and horizontal cells of the Xenopus retina., Hassin G., Vision Res. January 1, 1983; 23 (10): 921-31.


Regulation of indoleamine N-acetyltransferase activity in the retina: effects of light and dark, protein synthesis inhibitors and cyclic nucleotide analogs., Iuvone PM., Dev Biol. August 22, 1983; 273 (1): 111-9.


Phosphoinositide metabolism in the retina: localization to horizontal cells and regulation by light and divalent cations., Anderson RE., J Neurochem. September 1, 1983; 41 (3): 764-71.


A morphometric study of the retinal ganglion cell layer and optic nerve from metamorphosis in Xenopus laevis., Dunlop SA., Vision Res. January 1, 1984; 24 (5): 417-27.


The actions of gamma-aminobutyric acid, glycine and their antagonists upon horizontal cells of the Xenopus retina., Stone S., J Physiol. August 1, 1984; 353 249-64.


Topography of the retinal ganglion cell layer of Xenopus., Graydon ML., J Anat. August 1, 1984; 139 ( Pt 1) 145-57.


Antibodies against filamentous components in discrete cell types of the mouse retina., Dräger UC., J Neurosci. August 1, 1984; 4 (8): 2025-42.


A marker of early amacrine cell development in rat retina., Barnstable CJ., Dev Biol. June 1, 1985; 352 (2): 286-90.


Cell distributions in the retinal ganglion cell layer of adult Leptodactylid frogs after premetamorphic eye rotation., Dunlop SA., J Embryol Exp Morphol. October 1, 1985; 89 159-73.


Prevention of rod disk shedding by detachment from the retinal pigment epithelium., Williams DS., Invest Ophthalmol Vis Sci. January 1, 1987; 28 (1): 184-7.


A sharp retinal image increases the topographic precision of the goldfish retinotectal projection during optic nerve regeneration in stroboscopic light., Cook JE., Exp Brain Res. January 1, 1987; 68 (2): 319-28.


GABA and glycine modify the balance of rod and cone inputs to horizontal cells in the Xenopus retina., Witkovsky P., Exp Biol. January 1, 1987; 47 (1): 13-22.


Center-surround organization of Xenopus horizontal cells and its modification by gamma-aminobutyric acid and strontium., Stone S., Exp Biol. January 1, 1987; 47 (1): 1-12.


Cell patterning in pigment-chimeric eyes in Xenopus: germinal transplants and their contributions to growth of the pigmented retinal epithelium., Hunt RK., Proc Natl Acad Sci U S A. May 1, 1987; 84 (10): 3302-6.          


Retinal axons with and without their somata, growing to and arborizing in the tectum of Xenopus embryos: a time-lapse video study of single fibres in vivo., Harris WA., Development. September 1, 1987; 101 (1): 123-33.


GABA release from Xenopus retina does not correlate with horizontal cell membrane potential., Cunningham JR., Neuroscience. January 1, 1988; 24 (1): 39-48.


A developmental and ultrastructural study of the optic chiasma in Xenopus., Wilson MA., Development. March 1, 1988; 102 (3): 537-53.


Dopamine modifies the balance of rod and cone inputs to horizontal cells of the Xenopus retina., Witkovsky P., Dev Biol. May 24, 1988; 449 (1-2): 332-6.


Somatostatin-like immunoreactivity and glycine high-affinity uptake colocalize to an interplexiform cell of the Xenopus laevis retina., Smiley JF., J Comp Neurol. August 22, 1988; 274 (4): 608-18.


Morphology and synaptic connections of HRP-filled, axon-bearing horizontal cells in the Xenopus retina., Witkovsky P., J Comp Neurol. September 1, 1988; 275 (1): 29-38.


Transdifferentiation of ocular tissues in larval Xenopus laevis., Bosco L., Differentiation. November 1, 1988; 39 (1): 4-15.


Is the capacity for optic nerve regeneration related to continued retinal ganglion cell production in the frog?, Taylor JS., Eur J Neurosci. January 1, 1989; 1 (6): 626-38.


The internal horizontal cell of the frog: spatial summation., Mascetti GG., Acta Physiol Pharmacol Latinoam. January 1, 1989; 39 (2): 165-72.


Retinal ganglion cell death induced by unilateral tectal ablation in Xenopus., Straznicky C., Vis Neurosci. January 1, 1989; 2 (4): 339-47.


Gradual appearance of a regulated retinotectal projection pattern in Xenopus laevis., O'Rourke NA., Dev Biol. March 1, 1989; 132 (1): 251-65.


Serotoninergic neurons in the retina of Xenopus laevis: selective staining, identification, development, and content., Frederick JM., J Comp Neurol. March 22, 1989; 281 (4): 516-31.


Growth cone interactions with a glial cell line from embryonic Xenopus retina., Sakaguchi DS., Dev Biol. July 1, 1989; 134 (1): 158-74.                    


A single-cell analysis of early retinal ganglion cell differentiation in Xenopus: from soma to axon tip., Holt CE., J Neurosci. September 1, 1989; 9 (9): 3123-45.                                


Photoreceptor to horizontal cell synaptic transfer in the Xenopus retina: modulation by dopamine ligands and a circuit model for interactions of rod and cone inputs., Witkovsky P., J Neurophysiol. October 1, 1989; 62 (4): 864-81.


Cell lineage analysis reveals multipotent precursors in the ciliary margin of the frog retina., Wetts R., Dev Biol. November 1, 1989; 136 (1): 254-63.


The directed growth of retinal axons towards surgically transposed tecta in Xenopus; an examination of homing behaviour by retinal ganglion cell axons., Taylor JS., Development. January 1, 1990; 108 (1): 147-58.


The expression of phosphorylated and non-phosphorylated forms of MAP5 in the amphibian CNS., Viereck C., Dev Biol. February 5, 1990; 508 (2): 257-64.              


Dynamic changes in optic fiber terminal arbors lead to retinotopic map formation: an in vivo confocal microscopic study., O'Rourke NA., Neuron. August 1, 1990; 5 (2): 159-71.


Serotonin-like immunoreactivity in the retina of the clawed frog Xenopus laevis., Schütte M., J Neurocytol. August 1, 1990; 19 (4): 504-18.

???pagination.result.page??? 1 2 3 4 5 6 7 8 9 10 ???pagination.result.next???