Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Anatomy Item Literature (659) Expression Attributions Wiki
XB-ANAT-772

Papers associated with optic tectum

Limit to papers also referencing gene:
Results 1 - 50 of 659 results

Page(s): 1 2 3 4 5 6 7 8 9 10 11 Next

Sort Newest To Oldest Sort Oldest To Newest

Postsynaptic and Presynaptic NMDARs Have Distinct Roles in Visual Circuit Development., Kesner P., Cell Rep. July 28, 2020; 32 (4): 107955.                                            


Relationship between oxygen consumption and neuronal activity in a defined neural circuit., Özugur S., BMC Biol. July 3, 2020; 18 (1): 76.          


NMDARs Translate Sequential Temporal Information into Spatial Maps., Hiramoto M., iScience. June 26, 2020; 23 (6): 101130.                


Tectal CRFR1 receptor involvement in avoidance and approach behaviors in the South African clawed frog, Xenopus laevis., Prater CM., Horm Behav. April 1, 2020; 120 104707.


d-Glucuronolactone attenuates para-xylene-induced defects in neuronal development and plasticity in Xenopus tectum in vivo., Liao Y., Toxicology. January 1, 2020; 430 152341.


Lhx2/9 and Etv1 Transcription Factors have Complementary roles in Regulating the Expression of Guidance Genes slit1 and sema3a., Yang JJ., Neuroscience. January 1, 2020; 434 66-82.


Stentian structural plasticity in the developing visual system., Rahman TN., Proc Natl Acad Sci U S A. January 1, 2020; 117 (20): 10636-10638.    


An Innate Color Preference Displayed by Xenopus Tadpoles Is Persistent and Requires the Tegmentum., Hunt JE., Front Behav Neurosci. January 1, 2020; 14 71.        


A Simple and Efficient Method for Visualizing Individual Cells in vivo by Cre-Mediated Single-Cell Labeling by Electroporation (CREMSCLE)., Schohl A., Front Neural Circuits. January 1, 2020; 14 47.            


The Expression of Key Guidance Genes at a Forebrain Axon Turning Point Is Maintained by Distinct Fgfr Isoforms but a Common Downstream Signal Transduction Mechanism., Yang JJ., eNeuro. March 1, 2019; 6 (2):                   


Enhanced visual experience rehabilitates the injured brain in Xenopus tadpoles in an NMDAR-dependent manner., Gambrill AC., J Neurophysiol. January 1, 2019; 121 (1): 306-320.


Noncanonical Modulation of the eIF2 Pathway Controls an Increase in Local Translation during Neural Wiring., Cagnetta R., Mol Cell. January 1, 2019; 73 (3): 474-489.e5.                


Neuroendocrine modulation of predator avoidance/prey capture tradeoffs: Role of tectal NPY2R receptors., Islam R., Gen Comp Endocrinol. January 1, 2019; 282 113214.


Intrinsic temporal tuning of neurons in the optic tectum is shaped by multisensory experience., Busch SE., J Neurophysiol. January 1, 2019; 122 (3): 1084-1096.


Microinjection of DNA into Eyebuds in Xenopus laevis Embryos and Imaging of GFP Expressing Optic Axonal Arbors in Intact, Living Xenopus Tadpoles., Dao S., J Vis Exp. January 1, 2019; (151):


Nutrient restriction causes reversible G2 arrest in Xenopus neural progenitors., McKeown CR., Development. January 1, 2019; 146 (20):             


Location and functions of Inebriated in the Drosophila eye., Borycz J., Biol Open. July 23, 2018; 7 (7):


Tectal corticotropin-releasing factor (CRF) neurons respond to fasting and a reactive stressor in the African Clawed Frog, Xenopus laevis., Prater CM., Gen Comp Endocrinol. January 1, 2018; 258 91-98.


Developmental changes in spinal neuronal properties, motor network configuration, and neuromodulation at free-swimming stages of Xenopus tadpoles., Currie SP., J Neurophysiol. January 1, 2018; 119 (3): 786-795.


Role of the visual experience-dependent nascent proteome in neuronal plasticity., Liu HH., Elife. January 1, 2018; 7                     


Direct intertectal inputs are an integral component of the bilateral sensorimotor circuit for behavior in Xenopus tadpoles., Gambrill AC., J Neurophysiol. January 1, 2018; 119 (5): 1947-1961.


Preparations and Protocols for Whole Cell Patch Clamp Recording of Xenopus laevis Tectal Neurons., Liu Z., J Vis Exp. January 1, 2018; (133):


Microvascular anatomy of the brain of the adult pipid frog, Xenopus laevis (Daudin): A scanning electron microscopic study of vascular corrosion casts., Lametschwandtner A., J Morphol. January 1, 2018; 279 (7): 950-969.                                                                                              


Tectal CRFR1 receptors modulate food intake and feeding behavior in the South African clawed frog Xenopus laevis., Prater CM., Horm Behav. January 1, 2018; 105 86-94.


DSCAM differentially modulates pre- and postsynaptic structural and functional central connectivity during visual system wiring., Santos RA., Neural Dev. January 1, 2018; 13 (1): 22.                  


Development of an Acute Method to Deliver Transgenes Into the Brains of Adult Xenopus laevis., Yamaguchi A., Front Neural Circuits. January 1, 2018; 12 92.                


Mutations in Kinesin family member 6 reveal specific role in ependymal cell ciliogenesis and human neurological development., Konjikusic MJ., PLoS Genet. January 1, 2018; 14 (11): e1007817.              


Axon-Axon Interactions Regulate Topographic Optic Tract Sorting via CYFIP2-Dependent WAVE Complex Function., Cioni JM., Neuron. January 1, 2018; 97 (5): 1078-1093.e6.              


RNA Docking and Local Translation Regulate Site-Specific Axon Remodeling In Vivo., Wong HH., Neuron. August 16, 2017; 95 (4): 852-868.e8.                


In Vivo Analysis of the Neurovascular Niche in the Developing Xenopus Brain., Lau M., eNeuro. July 1, 2017; 4 (4):                           


Comparative analysis of monoaminergic cerebrospinal fluid-contacting cells in Osteichthyes (bony vertebrates)., Xavier AL., J Comp Neurol. June 15, 2017; 525 (9): 2265-2283.                        


Gene expression analysis of developing cell groups in the pretectal region of Xenopus laevis., Morona R., J Comp Neurol. March 1, 2017; 525 (4): 715-752.                                            


The Nedd4 binding protein 3 is required for anterior neural development in Xenopus laevis., Kiem LM., Dev Biol. March 1, 2017; 423 (1): 66-76.                            


Reversible developmental stasis in response to nutrient availability in the Xenopus laevis central nervous system., McKeown CR., J Exp Biol. February 1, 2017; 220 (Pt 3): 358-368.


5-hydroxymethylcytosine marks postmitotic neural cells in the adult and developing vertebrate central nervous system., Diotel N., J Comp Neurol. January 1, 2017; 525 (3): 478-497.  


Translational profiling of retinal ganglion cell optic nerve regeneration in Xenopus laevis., Whitworth GB., Dev Biol. January 1, 2017; 426 (2): 360-373.              


Visual experience dependent regulation of neuronal structure and function by histone deacetylase 1 in developing Xenopus tectum in vivo., Ruan H., Dev Neurobiol. January 1, 2017; 77 (8): 947-962.


Spinal cord regeneration in Xenopus laevis., Edwards-Faret G., Nat Protoc. January 1, 2017; 12 (2): 372-389.      


miR-182 Regulates Slit2-Mediated Axon Guidance by Modulating the Local Translation of a Specific mRNA., Bellon A., Cell Rep. January 1, 2017; 18 (5): 1171-1186.                              


A cellular mechanism for inverse effectiveness in multisensory integration., Truszkowski TL., Elife. January 1, 2017; 6       


The Gliotransmitter d-Serine Promotes Synapse Maturation and Axonal Stabilization In Vivo., Van Horn MR., J Neurosci. January 1, 2017; 37 (26): 6277-6288.                


Distinct cis-acting regions control six6 expression during eye field and optic cup stages of eye formation., Ledford KL., Dev Biol. January 1, 2017; 426 (2): 418-428.                        


The brain is required for normal muscle and nerve patterning during early Xenopus development., Herrera-Rincon C., Nat Commun. January 1, 2017; 8 (1): 587.              


Functional Reintegration of Sensory Neurons and Transitional Dendritic Reduction of Mitral/Tufted Cells during Injury-Induced Recovery of the Larval Xenopus Olfactory Circuit., Hawkins SJ., Front Cell Neurosci. January 1, 2017; 11 380.            


Mapping neurogenesis onset in the optic tectum of Xenopus laevis., Herrgen L., Dev Neurobiol. December 1, 2016; 76 (12): 1328-1341.


Acute phase response in amputated tail stumps and neural tissue-preferential expression in tail bud embryos of the Xenopus neuronal pentraxin I gene., Hatta-Kobayashi Y., Dev Growth Differ. December 1, 2016; 58 (9): 688-701.              


Expression of the insulinoma-associated 1 (insm1) gene in Xenopus laevis tadpole retina and brain., Bosse JL., Gene Expr Patterns. September 1, 2016; 22 (1): 26-29.        


Rapid and efficient analysis of gene function using CRISPR-Cas9 in Xenopus tropicalis founders., Shigeta M., Genes Cells. July 1, 2016; 21 (7): 755-71.                


Identification of anti-cancer chemical compounds using Xenopus embryos., Tanaka M., Cancer Sci. June 1, 2016; 107 (6): 803-11.            


Deep-brain photoreception links luminance detection to motor output in Xenopus frog tadpoles., Currie SP., Proc Natl Acad Sci U S A. May 24, 2016; 113 (21): 6053-8.                      

Page(s): 1 2 3 4 5 6 7 8 9 10 11 Next

Xenbase: The Xenopus Model Organism Knowledgebase.
Version: 4.15.0
Major funding for Xenbase is provided by grant P41 HD064556