Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3130) Expression Attributions Wiki
XB-ANAT-821

Papers associated with kidney (and slc5a1.2)

Limit to papers also referencing gene:
Show all kidney papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Xenopus Ssbp2 is required for embryonic pronephros morphogenesis and terminal differentiation., Cervino AS., Sci Rep. October 4, 2023; 13 (1): 16671.                                          


The enpp4 ectonucleotidase regulates kidney patterning signalling networks in Xenopus embryos., Massé K., Commun Biol. October 7, 2021; 4 (1): 1158.                                


Ttc30a affects tubulin modifications in a model for ciliary chondrodysplasia with polycystic kidney disease., Getwan M., Proc Natl Acad Sci U S A. September 28, 2021; 118 (39):                                                   


Mutations in PRDM15 Are a Novel Cause of Galloway-Mowat Syndrome., Mann N., J Am Soc Nephrol. March 1, 2021; 32 (3): 580-596.    


Dynamin Binding Protein Is Required for Xenopus laevis Kidney Development., DeLay BD., Front Physiol. January 1, 2019; 10 143.                                


Alternative channels for urea in the inner medulla of the rat kidney., Nawata CM., Am J Physiol Renal Physiol. December 1, 2015; 309 (11): F916-24.


The Wnt/JNK signaling target gene alcam is required for embryonic kidney development., Cizelsky W., Development. May 1, 2014; 141 (10): 2064-74.          


Enhanced XAO: the ontology of Xenopus anatomy and development underpins more accurate annotation of gene expression and queries on Xenbase., Segerdell E., J Biomed Semantics. October 18, 2013; 4 (1): 31.      


Xenopus as a model system for the study of GOLPH2/GP73 function: Xenopus GOLPH2 is required for pronephros development., Li L., PLoS One. January 1, 2012; 7 (6): e38939.                                              


Inversin relays Frizzled-8 signals to promote proximal pronephros development., Lienkamp S., Proc Natl Acad Sci U S A. November 23, 2010; 107 (47): 20388-93.                          


The miR-30 miRNA family regulates Xenopus pronephros development and targets the transcription factor Xlim1/Lhx1., Agrawal R., Development. December 1, 2009; 136 (23): 3927-36.              


A dual requirement for Iroquois genes during Xenopus kidney development., Alarcón P., Development. October 1, 2008; 135 (19): 3197-207.                            


A perchlorate sensitive iodide transporter in frogs., Carr DL., Gen Comp Endocrinol. March 1, 2008; 156 (1): 9-14.      


Patterning the embryonic kidney: BMP signaling mediates the differentiation of the pronephric tubules and duct in Xenopus laevis., Bracken CM., Dev Dyn. January 1, 2008; 237 (1): 132-44.          


Organization of the pronephric kidney revealed by large-scale gene expression mapping., Raciti D., Genome Biol. January 1, 2008; 9 (5): R84.                                                                        


Xenopus Bicaudal-C is required for the differentiation of the amphibian pronephros., Tran U., Dev Biol. July 1, 2007; 307 (1): 152-64.                  


Na+ -D-glucose cotransporter in the kidney of Leucoraja erinacea: molecular identification and intrarenal distribution., Althoff T., Am J Physiol Regul Integr Comp Physiol. June 1, 2007; 292 (6): R2391-9.


Role of actin in the cAMP-dependent activation of sodium/glucose cotransporter in renal epithelial cells., Ikari A., Biochim Biophys Acta. June 1, 2005; 1711 (1): 20-4.


Synthesis of 18F-fluoroalkyl-beta-D-glucosides and their evaluation as tracers for sodium-dependent glucose transporters., de Groot TJ., J Nucl Med. December 1, 2003; 44 (12): 1973-81.


Rat kidney MAP17 induces cotransport of Na-mannose and Na-glucose in Xenopus laevis oocytes., Blasco T., Am J Physiol Renal Physiol. October 1, 2003; 285 (4): F799-810.


Synthesis and biologic evaluation of (11)c-methyl-d-glucoside, a tracer of the sodium-dependent glucose transporters., Bormans GM., J Nucl Med. July 1, 2003; 44 (7): 1075-81.


Cloning and characterization of a novel Na+-dependent glucose transporter (NaGLT1) in rat kidney., Horiba N., J Biol Chem. April 25, 2003; 278 (17): 14669-76.


Embryonic expression of Xenopus SGLT-1L, a novel member of the solute carrier family 5 (SLC5), is confined to tubules of the pronephric kidney., Eid SR., Int J Dev Biol. January 1, 2002; 46 (1): 177-84.      


Effects of gallium and mercury ions on transport systems., Moschèn., J Dent Res. August 1, 2001; 80 (8): 1753-7.


Na+-to-sugar stoichiometry of SGLT3., Díez-Sampedro A., Am J Physiol Renal Physiol. February 1, 2001; 280 (2): F278-82.


The transport modifier RS1 is localized at the inner side of the plasma membrane and changes membrane capacitance., Valentin M., Biochim Biophys Acta. September 29, 2000; 1468 (1-2): 367-80.


Functional expression of tagged human Na+-glucose cotransporter in Xenopus laevis oocytes., Bissonnette P., J Physiol. October 15, 1999; 520 Pt 2 359-71.


Cloning and functional expression of an SGLT-1-like protein from the Xenopus laevis intestine., Nagata K., Am J Physiol. May 1, 1999; 276 (5): G1251-9.


Biophysical characteristics of the pig kidney Na+/glucose cotransporter SGLT2 reveal a common mechanism for SGLT1 and SGLT2., Mackenzie B., J Biol Chem. December 20, 1996; 271 (51): 32678-83.


The human gene of a protein that modifies Na(+)-D-glucose co-transport., Lambotte S., DNA Cell Biol. September 1, 1996; 15 (9): 769-77.


Sugar binding to Na+/glucose cotransporters is determined by the carboxyl-terminal half of the protein., Panayotova-Heiermann M., J Biol Chem. April 26, 1996; 271 (17): 10029-34.


Molecular characteristics of Na(+)-coupled glucose transporters in adult and embryonic rat kidney., You G., J Biol Chem. December 8, 1995; 270 (49): 29365-71.


Electrogenic properties of the epithelial and neuronal high affinity glutamate transporter., Kanai Y., J Biol Chem. July 14, 1995; 270 (28): 16561-8.


The high affinity Na+/glucose cotransporter. Re-evaluation of function and distribution of expression., Lee WS., J Biol Chem. April 22, 1994; 269 (16): 12032-9.


The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose., Kanai Y., J Clin Invest. January 1, 1994; 93 (1): 397-404.


Cloning of a membrane-associated protein which modifies activity and properties of the Na(+)-D-glucose cotransporter., Veyhl M., J Biol Chem. November 25, 1993; 268 (33): 25041-53.


Cloning of a human kidney cDNA with similarity to the sodium-glucose cotransporter., Wells RG., Am J Physiol. September 1, 1992; 263 (3 Pt 2): F459-65.


Molecular evidence for two renal Na+/glucose cotransporters., Pajor AM., Biochim Biophys Acta. April 29, 1992; 1106 (1): 216-20.


Cloning and functional expression of a mammalian Na+/nucleoside cotransporter. A member of the SGLT family., Pajor AM., J Biol Chem. February 25, 1992; 267 (6): 3557-60.

???pagination.result.page??? 1