Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3130) Expression Attributions Wiki
XB-ANAT-821

Papers associated with kidney (and kcnj1)

Limit to papers also referencing gene:
Show all kidney papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Mutation affecting the conserved acidic WNK1 motif causes inherited hyperkalemic hyperchloremic acidosis., Louis-Dit-Picard H., J Clin Invest. December 1, 2020; 130 (12): 6379-6394.


ROMK expression remains unaltered in a mouse model of familial hyperkalemic hypertension caused by the CUL3Δ403-459 mutation., Murthy M., Physiol Rep. July 1, 2016; 4 (13):             


Inhibition of ROMK channels by low extracellular K+ and oxidative stress., Frindt G., Am J Physiol Renal Physiol. July 15, 2013; 305 (2): F208-15.


Downregulation of the renal outer medullary K(+) channel ROMK by the AMP-activated protein kinase., Siraskar B., Pflugers Arch. February 1, 2013; 465 (2): 233-45.


Functional and developmental expression of a zebrafish Kir1.1 (ROMK) potassium channel homologue Kcnj1., Abbas L., J Physiol. March 15, 2011; 589 (Pt 6): 1489-503.


Functional analysis of Rfx6 and mutant variants associated with neonatal diabetes., Pearl EJ., Dev Biol. March 1, 2011; 351 (1): 135-45.                    


Tamm-Horsfall glycoprotein interacts with renal outer medullary potassium channel ROMK2 and regulates its function., Renigunta A., J Biol Chem. January 21, 2011; 286 (3): 2224-35.


Development of a selective small-molecule inhibitor of Kir1.1, the renal outer medullary potassium channel., Bhave G., Mol Pharmacol. January 1, 2011; 79 (1): 42-50.


The glycolytic enzymes glyceraldehyde 3-phosphate dehydrogenase and enolase interact with the renal epithelial K+ channel ROMK2 and regulate its function., Renigunta A., Cell Physiol Biochem. January 1, 2011; 28 (4): 663-72.


Effects of dietary K on cell-surface expression of renal ion channels and transporters., Frindt G., Am J Physiol Renal Physiol. October 1, 2010; 299 (4): F890-7.


Mouse cystic fibrosis transmembrane conductance regulator forms cAMP-PKA-regulated apical chloride channels in cortical collecting duct., Lu M., Proc Natl Acad Sci U S A. March 30, 2010; 107 (13): 6082-7.


The miR-30 miRNA family regulates Xenopus pronephros development and targets the transcription factor Xlim1/Lhx1., Agrawal R., Development. December 1, 2009; 136 (23): 3927-36.              


Structural changes in the cytoplasmic pore of the Kir1.1 channel during pHi-gating probed by FRET., Lee JR., J Biomed Sci. March 6, 2009; 16 29.      


Dietary K regulates ROMK channels in connecting tubule and cortical collecting duct of rat kidney., Frindt G., Am J Physiol Renal Physiol. February 1, 2009; 296 (2): F347-54.


The acidic motif of WNK4 is crucial for its interaction with the K channel ROMK., Murthy M., Biochem Biophys Res Commun. October 31, 2008; 375 (4): 651-4.


Expression of tetraspan protein CD63 activates protein-tyrosine kinase (PTK) and enhances the PTK-induced inhibition of ROMK channels., Lin D., J Biol Chem. March 21, 2008; 283 (12): 7674-81.


Organization of the pronephric kidney revealed by large-scale gene expression mapping., Raciti D., Genome Biol. January 1, 2008; 9 (5): R84.                                                                        


Xenopus Bicaudal-C is required for the differentiation of the amphibian pronephros., Tran U., Dev Biol. July 1, 2007; 307 (1): 152-64.                  


Inhibitor of growth 4 (ING4) is up-regulated by a low K intake and suppresses renal outer medullary K channels (ROMK) by MAPK stimulation., Zhang X., Proc Natl Acad Sci U S A. May 29, 2007; 104 (22): 9517-22.


An SGK1 site in WNK4 regulates Na+ channel and K+ channel activity and has implications for aldosterone signaling and K+ homeostasis., Ring AM., Proc Natl Acad Sci U S A. March 6, 2007; 104 (10): 4025-9.


WNK1 affects surface expression of the ROMK potassium channel independent of WNK4., Cope G., J Am Soc Nephrol. July 1, 2006; 17 (7): 1867-74.


CFTR is required for PKA-regulated ATP sensitivity of Kir1.1 potassium channels in mouse kidney., Lu M., J Clin Invest. March 1, 2006; 116 (3): 797-807.


WNK3, a kinase related to genes mutated in hereditary hypertension with hyperkalaemia, regulates the K+ channel ROMK1 (Kir1.1)., Leng Q., J Physiol. March 1, 2006; 571 (Pt 2): 275-86.


Subunit-subunit interactions are critical for proton sensitivity of ROMK: evidence in support of an intermolecular gating mechanism., Leng Q., Proc Natl Acad Sci U S A. February 7, 2006; 103 (6): 1982-7.


Involvement of Golgin-160 in cell surface transport of renal ROMK channel: co-expression of Golgin-160 increases ROMK currents., Bundis F., Cell Physiol Biochem. January 1, 2006; 17 (1-2): 1-12.


Phosphorylation-regulated endoplasmic reticulum retention signal in the renal outer-medullary K+ channel (ROMK)., O'Connell AD., Proc Natl Acad Sci U S A. July 12, 2005; 102 (28): 9954-9.


Inhibition of ROMK potassium channel by syntaxin 1A., Sun TJ., Am J Physiol Renal Physiol. February 1, 2005; 288 (2): F284-9.


[WNK1 and WNK4, new players in salt and water homeostasis], Hadchouel J., Med Sci (Paris). January 1, 2005; 21 (1): 55-60.


Disease-causing mutant WNK4 increases paracellular chloride permeability and phosphorylates claudins., Yamauchi K., Proc Natl Acad Sci U S A. March 30, 2004; 101 (13): 4690-4.


Assembly and trafficking of a multiprotein ROMK (Kir 1.1) channel complex by PDZ interactions., Yoo D., J Biol Chem. February 20, 2004; 279 (8): 6863-73.


WNK4 regulates apical and basolateral Cl- flux in extrarenal epithelia., Kahle KT., Proc Natl Acad Sci U S A. February 17, 2004; 101 (7): 2064-9.


Dietary potassium restriction stimulates endocytosis of ROMK channel in rat cortical collecting duct., Chu PY., Am J Physiol Renal Physiol. December 1, 2003; 285 (6): F1179-87.


Classification and rescue of ROMK mutations underlying hyperprostaglandin E syndrome/antenatal Bartter syndrome., Peters M., Kidney Int. September 1, 2003; 64 (3): 923-32.


Cell surface expression of the ROMK (Kir 1.1) channel is regulated by the aldosterone-induced kinase, SGK-1, and protein kinase A., Yoo D., J Biol Chem. June 20, 2003; 278 (25): 23066-75.


The serum and glucocorticoid-inducible kinase SGK1 and the Na+/H+ exchange regulating factor NHERF2 synergize to stimulate the renal outer medullary K+ channel ROMK1., Yun CC., J Am Soc Nephrol. December 1, 2002; 13 (12): 2823-30.


Protein kinase C (PKC)-induced phosphorylation of ROMK1 is essential for the surface expression of ROMK1 channels., Lin D., J Biol Chem. November 15, 2002; 277 (46): 44278-84.


Molecular mechanism of a COOH-terminal gating determinant in the ROMK channel revealed by a Bartter's disease mutation., Flagg TP., J Physiol. October 15, 2002; 544 (2): 351-62.


Evidence for endocytosis of ROMK potassium channel via clathrin-coated vesicles., Zeng WZ., Am J Physiol Renal Physiol. October 1, 2002; 283 (4): F630-9.


Barttin increases surface expression and changes current properties of ClC-K channels., Waldegger S., Pflugers Arch. June 1, 2002; 444 (3): 411-8.


Functional implications of mutations in the human renal outer medullary potassium channel (ROMK2) identified in Bartter syndrome., Starremans PG., Pflugers Arch. January 1, 2002; 443 (3): 466-72.


An amino acid triplet in the NH2 terminus of rat ROMK1 determines interaction with SUR2B., Dong K., J Biol Chem. November 23, 2001; 276 (47): 44347-53.


Effects of gallium and mercury ions on transport systems., Moschèn., J Dent Res. August 1, 2001; 80 (8): 1753-7.


K(+)-dependent gating of K(ir)1.1 channels is linked to pH gating through a conformational change in the pore., Schulte U., J Physiol. July 1, 2001; 534 (Pt 1): 49-58.


Functional heterogeneity of ROMK mutations linked to hyperprostaglandin E syndrome., Jeck N., Kidney Int. May 1, 2001; 59 (5): 1803-11.


Influences of the N- and C-termini of the distal nephron inward rectifier, ROMK., Bhandari S., Kidney Blood Press Res. January 1, 2001; 24 (3): 142-8.


PKA-induced stimulation of ROMK1 channel activity is governed by both tethering and non-tethering domains of an A kinase anchor protein., Ali S., Cell Physiol Biochem. January 1, 2001; 11 (3): 135-42.


Phosphatidylinositol 4,5-bisphosphate and intracellular pH regulate the ROMK1 potassium channel via separate but interrelated mechanisms., Leung YM., J Biol Chem. April 7, 2000; 275 (14): 10182-9.


Rat homolog of sulfonylurea receptor 2B determines glibenclamide sensitivity of ROMK2 in Xenopus laevis oocyte., Tanemoto M., Am J Physiol Renal Physiol. April 1, 2000; 278 (4): F659-66.


Na(+) sensitivity of ROMK1 K(+) channel: role of the Na(+)/H(+) antiporter., Sabirov RZ., J Membr Biol. November 1, 1999; 172 (1): 67-76.


Expression of a functional Kir4 family inward rectifier K+ channel from a gene cloned from mouse liver., Pearson WL., J Physiol. February 1, 1999; 514 ( Pt 3) (Pt 3): 639-53.

???pagination.result.page??? 1 2 ???pagination.result.next???