Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (769) Expression Attributions Wiki
XB-ANAT-87

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 4 5 6 7 8 9 10 11 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Localization of the ribosomal DNA complements in the nucleolar organizer region of Xenopus laevis., Birnstiel ML., Natl Cancer Inst Monogr. December 1, 1966; 23 431-47.


[Increase in organizer cistrons for 5S RNA and transfer RNA in small Xenopus laevis oocytes]., Wegnez M., Arch Int Physiol Biochim. January 1, 1971; 79 (1): 215-7.


[Biochemical research on oogenesis. 4. Absence of amplification of 5 S RNA and tRNA organizer genes in early Xenopus laevis oocytes]., Wegnez M., Biochimie. January 1, 1972; 54 (8): 1069-72.


Properties of the primary organization field in the embryo of Xenopus laevis. 3. Retention of polarity in cell groups excised from the region of the early organizer., Cooke J., J Embryol Exp Morphol. August 1, 1972; 28 (1): 47-56.


Properties of the primary organization field in the embryo of Xenopus laevis. I. Autonomy of cell behaviour at the site of initial organizer formation., Cooke J., J Embryol Exp Morphol. August 1, 1972; 28 (1): 13-26.


The nucleolar organizer of Plethodon cinereus cinereus (Green). I. Location of the nucleolar organizer by in situ nucleic acid hybridization., Macgregor HC., Chromosoma. July 18, 1973; 42 (4): 415-26.


Properties of the primary organization field in the embryo of Xenopus laevis. V. Regulation after removal of the head organizer, in normal early gastrulae and in those already possessing a second implanted organizer., Cooke J., J Embryol Exp Morphol. October 1, 1973; 30 (2): 283-300.


Variation in rDNA redundancy level and nucleolar organizer length in normal and variant lines of the Mexican axolotl., Sinclair JH., J Cell Sci. July 1, 1974; 15 (2): 239-57.


Amplified ribosomal DNA from Xenopus laevis has heterogeneous spacer lengths., Wellauer PK., Proc Natl Acad Sci U S A. July 1, 1974; 71 (7): 2823-7.


Repression of nucleolar organizer activity in an interspecific hybrid of the genus Xenopus., Cassidy DM., Dev Biol. November 1, 1974; 41 (1): 84-96.


Local autonomy of gastrulation movements after dorsal lip removal in two anuran amphibians., Cooke J., J Embryol Exp Morphol. February 1, 1975; 33 (1): 147-57.


In situ hybridization of "nick-translated" 3H-ribosomal DNA to chromosomes from salamanders., Macgregor HC., Chromosoma. January 27, 1976; 54 (1): 15-25.


The karyotype of the tetraploid species Xenopus vestitus Laurent (Anura: pipidae)., Tymowska J., Cytogenet Cell Genet. January 1, 1977; 19 (6): 344-54.


Transplantation of nuclei from lymphocytes of adult frogs into enucleated eggs: special focus on technical parameters., Du Pasquier L., Differentiation. May 26, 1977; 8 (1): 9-19.


Differently sized rDNA repeating units of Xenopus laevis are arranged as internally homogeneous clusters along the nucleolar organizer., Junakovic N., Nucleic Acids Res. April 1, 1978; 5 (4): 1335-43.


Cell number in relation to primary pattern formation in the embryo of Xenopus laevis. I. The cell cycle during new pattern formation in response to implanted organizers., Cooke J., J Embryol Exp Morphol. June 1, 1979; 51 165-82.


Multiple ribosomal gene sites revealed by in situ hybridization of Xenopus rDNA to Triturus lampbrush chromosomes., Morgan GT., Chromosoma. January 1, 1980; 80 (3): 309-30.


The karyotype of the hexaploid species Xenopus ruwenzoriensis Fischberg and Kobel (Anura: Pipidae)., Tymowska J., Cytogenet Cell Genet. January 1, 1980; 27 (1): 39-44.


Chromosome banding in amphibia. IV. Differentiation of GC- and AT-rich chromosome regions in Anura., Schmid M., Chromosoma. January 1, 1980; 77 (1): 83-103.


The association of primary embryonic organizer activity with the future dorsal side of amphibian eggs and early embryos., Malacinski GM., Dev Biol. June 15, 1980; 77 (2): 449-62.


A comparison of the karyotype, constitutive heterochromatin, and nucleolar organizer regions of the new tetraploid species Xenopus epitropicalis Fischberg and Picard with those of Xenopus tropicalis Gray (Anura, Pipidae)., Tymowska J., Cytogenet Cell Genet. January 1, 1982; 34 (1-2): 149-57.


Effects of inducers on inner and outer gastrula ectoderm layers of Xenopus laevis., Asashima M., Differentiation. January 1, 1983; 23 (3): 206-12.


Silver positivity of the NORs during embryonic development of Xenopus laevis., De Capoa A., Exp Cell Res. September 1, 1983; 147 (2): 472-8.


Dorsalization and neural induction: properties of the organizer in Xenopus laevis., Smith JC., J Embryol Exp Morphol. December 1, 1983; 78 299-317.


Ultrastructural localization of nucleolar organizers during oogenesis in Xenopus laevis using a silver technique., Boloukhère M., J Cell Sci. January 1, 1984; 65 73-93.


Cell lineage analysis of neural induction: origins of cells forming the induced nervous system., Jacobson M., Dev Biol. March 1, 1984; 102 (1): 122-9.


Identification and localization of a novel nucleolar protein of high molecular weight by a monoclonal antibody., Schmidt-Zachmann MS., Exp Cell Res. August 1, 1984; 153 (2): 327-46.


Fibrillarin: a new protein of the nucleolus identified by autoimmune sera., Ochs RL., Biol Cell. January 1, 1985; 54 (2): 123-33.


Cell lineage labels and region-specific markers in the analysis of inductive interactions., Smith JC., J Embryol Exp Morphol. November 1, 1985; 89 Suppl 317-31.


Induction of neural cell adhesion molecule (NCAM) in Xenopus embryos., Jacobson M., Dev Biol. August 1, 1986; 116 (2): 524-31.            


A constitutive nucleolar protein identified as a member of the nucleoplasmin family., Schmidt-Zachmann MS., EMBO J. July 1, 1987; 6 (7): 1881-90.


The entire mesodermal mantle behaves as Spemann's organizer in dorsoanterior enhanced Xenopus laevis embryos., Kao KR., Dev Biol. May 1, 1988; 127 (1): 64-77.                      


The first cleavage plane and the embryonic axis are determined by separate mechanisms in Xenopus laevis. I. Independence in undisturbed embryos., Danilchik MV., Dev Biol. July 1, 1988; 128 (1): 58-64.


Accumulation and decay of DG42 gene products follow a gradient pattern during Xenopus embryogenesis., Rosa F., Dev Biol. September 1, 1988; 129 (1): 114-23.            


DNase I sensitivity of ribosomal RNA genes in chromatin and nucleolar dominance in wheat., Thompson WF., J Mol Biol. December 5, 1988; 204 (3): 535-48.


Cortical rotation of the Xenopus egg: consequences for the anteroposterior pattern of embryonic dorsal development., Gerhart J., Development. January 1, 1989; 107 Suppl 37-51.


Inducing factors and the control of mesodermal pattern in Xenopus laevis., Smith JC., Development. January 1, 1989; 107 Suppl 149-59.


Signals from the dorsal blastopore lip region during gastrulation bias the ectoderm toward a nonepidermal pathway of differentiation in Xenopus laevis., Savage R., Dev Biol. May 1, 1989; 133 (1): 157-68.


Hyperdorsoanterior embryos from Xenopus eggs treated with D2O., Scharf SR., Dev Biol. July 1, 1989; 134 (1): 175-88.


Variation within and between nucleolar organizer regions in Australian hylid frogs (Anura) shown by 18S + 28S in-situ hybridization., King M., Genetica. January 1, 1990; 80 (1): 17-29.


High resolution mapping of Xenopus laevis 5S and ribosomal RNA genes by EM in situ hybridization., Narayanswami S., Cytometry. January 1, 1990; 11 (1): 144-52.


Mesoderm induction by fibroblast growth factor in early Xenopus development., Slack JM., Philos Trans R Soc Lond B Biol Sci. March 12, 1990; 327 (1239): 75-84.


Neural expression of the Xenopus homeobox gene Xhox3: evidence for a patterning neural signal that spreads through the ectoderm., Ruiz i Altaba A., Development. April 1, 1990; 108 (4): 595-604.


The anterior extent of dorsal development of the Xenopus embryonic axis depends on the quantity of organizer in the late blastula., Stewart RM., Development. June 1, 1990; 109 (2): 363-72.


[Concanavalin-binding proteins and cytokeratins in different tissues of the early amphibian gastrula (Rana temporaria, Xenopus laevis)]., Simirskiĭ VN., Ontogenez. January 1, 1991; 22 (3): 245-56.


Differential expression of two cadherins in Xenopus laevis., Angres B., Development. March 1, 1991; 111 (3): 829-44.                    


Xwnt-8, a Xenopus Wnt-1/int-1-related gene responsive to mesoderm-inducing growth factors, may play a role in ventral mesodermal patterning during embryogenesis., Christian JL., Development. April 1, 1991; 111 (4): 1045-55.    


Cell rearrangement during gastrulation of Xenopus: direct observation of cultured explants., Wilson P., Development. May 1, 1991; 112 (1): 289-300.


Organizer-specific homeobox genes in Xenopus laevis embryos., Blumberg B., Science. July 12, 1991; 253 (5016): 194-6.


Injected Wnt RNA induces a complete body axis in Xenopus embryos., Sokol S., Cell. November 15, 1991; 67 (4): 741-52.              

???pagination.result.page??? 1 2 3 4 5 6 7 8 9 10 11 ???pagination.result.next???