Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-IMG-117496

Xenbase Image ID: 117496


Figure 6. Xwnt-8, but not BVg1 or noggin, is able to increase the accumulation of both ectopic and endogenous β-catenin as assayed by Western blots. (A) In multiple independent experiments (see text), probing Western blots for c-myc, microinjection of 100 pg of β-catenin–myc RNA with 200 pg of β-galactosidase (lane 2), Xwnt-11 (lane 3), or Xwnt-8 (lane 4) reveals that only Xwnt-8 is able to increase β-catenin levels (compare lanes 2 and 4). Uninjected embryos (lane 1) do not express the c-myc epitope. In separate experiments (lanes 5–8), neither BVg1 (lane 7) nor noggin (lane 8) increases the accumulation of β-catenin above control-injected levels (lane 6), while uninjected embryos do not express β-catenin–myc (lane 5). (B) Microinjection of 5–10 ng of control prolactin (lane 1), Xwnt-5A (lane 2), Xwnt-8 (lane 3), BVg1 (lane 4), or noggin (lane 5) RNA demonstrates that Xwnt-8 increases the steady state levels of endogenous β-catenin (compare lanes 1 and 3), as shown above for ectopic β-catenin. In these experiments, the animal poles of two-cell embryos were injected with RNA, followed by the extraction of protein before stage 7. To control for protein content and even loading, all endogenous β-catenin bands were normalized to both α-spectrin and tubulin signals from the same Western blot.

Image published in: Larabell CA et al. (1997)

Image reproduced on Xenbase with permission of the publisher and the copyright holder. This image is reproduced with permission of the journal and the copyright holder. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license

Larger Image
Printer Friendly View

Return to previous page