Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-IMG-118312

Xenbase Image ID: 118312

Figure 7. Effect of the membrane potential on HCO3− and Cl− transport by slc26a6. A Xenopus oocyte expressing slc26a6 was bathed in HCO3−-buffered media. (A) After the stabilization of pHi, the membrane potential was clamped at −30 (gray trace) or 40 mV (black trace) before exposing the oocyte to Cl−-free medium. Where indicated, Clo− was restored, and, after an additional 5 min, the membrane potential was switched from 40 to −100 mV (gray period). (B) After stabilization of the pHi of the oocyte incubated in HCO3−-buffered media, the membrane potential was clamped at −100 mV, and the oocyte was exposed to Cl−-free medium (gray period). Where indicated by the black period, the membrane potential was switched to 40 mV. The models depict the mode of exchange measured at each period. (C) After the stabilization of Cli− (black trace), the oocyte was incubated in Cl−-free medium without holding the membrane potential was then incubated in the presence of Clo− while holding the membrane potential at 40 or −100 mV as indicated. Note the initiation of Cl− influx into the oocytes by holding the membrane potential at −100 mV. Each experiment is representative of at least three others with similar results.

Image published in: Shcheynikov N et al. (2006)

Copyright © 2006, The Rockefeller University Press. This image is reproduced with permission of the journal and the copyright holder. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license

Larger Image
Printer Friendly View

Return to previous page