Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-IMG-124739

Xenbase Image ID: 124739


Figure 11. Estimation of the axial diffusion coefficient of PAGFP within the CC using the 1-D model. (A) Region over which the fluorescence was averaged in the radial dimension from each time course image to produce the spatiotemporal fluorescence profile shown in C. Note that in this case the region begins at an axial position just proximal to the CC, z(cc). (B) To produce the Dirichlet BC the proximal five pixels in the region were averaged and fitted as described in Fig. 10. (C) Spatiotemporal map of fluorescence changes along the axial extent of the region shown in A. (D) Model prediction F′m(z,t) that best fitted the data. Eqs. 13–15 were solved with spatially varying D(z): D(z = IS), 5.2 µm2 s−1; D(z = OS), 0.08 µm2 s−1; D(z = CC) was varied to obtain the best fit of the model to the data. The thick black lines in C and D represent the Dirichlet boundary constraint. (E) Area of cross section versus axial distance profile, A(z), for the region of the cell analyzed and which was used in Eq. 13 to calculate model profiles; note the sharp drop in A at the CC. The red symbols denote the transitions between IS and CC (z(CCl); left symbol) and the CC and OS (z(CCL); right symbol), and define the ranges over which D(z) values described in D were applied. (F) RMS error values plotted as a function of DCC.

Image published in: Calvert PD et al. (2010)

© 2010 Calvert et al. This image is reproduced with permission of the journal and the copyright holder. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike license

Larger Image
Printer Friendly View

Return to previous page