Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-IMG-127278

Xenbase Image ID: 127278

Figure 4. Biochemical purification of a tagged inhibitory synaptic protein complex.(A) Immunoblotting of various proteins shows that detergent solubilized protein extract S3 was enriched in both inhibitory (VGABAARα1, GABAARα1, GABAARβ2/3, GABAARγ2) and excitatory (GluR2, PSD95) synaptic proteins, as well as mitochondria (COx). Gel filtration of fraction S3 enabled enrichment of synaptic protein complexes relative to intracellular proteins, as shown by the specific exclusion of the endoplasmic reticulum marker BIP, from the high molecular weight fractions (6–10). Protein concentration of each fraction was measured (top), and the void volume determined by the elution of Blue Dextran (2000 kDa). Identical results were obtained for endogenous proteins in fractions prepared from wildtype or Otx1-eGFP cortices (not shown). (B) Fractions 6–10 (red box in A) from Otx1-VGABAARα1 or Otx1-eGFP control were pooled and subject to co-immunopurification using an anti-eGFP antibody. Immunoblotting confirmed the specific presence of inhibitory synaptic proteins (VGABAARα1, GABAARα1, GABAARβ2/3, GABAARγ2) and the absence of excitatory synaptic (GluR2, PSD95) and mitochondrial (COx) proteins in the material immunopurified via VGABAARα1. Only soluble eGFP was detected in the control sample. IN: Input. FT: Flow-through. IP: Immunoprecipitate. V: Venus. GAR: GABAA receptor. Further biochemical experimental results are presented in Figure S1.

Image published in: Heller EA et al. (2012)

Heller et al. This image is reproduced with permission of the journal and the copyright holder. This is an open-access article distributed under the terms of the Creative Commons Attribution license

Larger Image
Printer Friendly View

Return to previous page