Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-IMG-129428

Xenbase Image ID: 129428


Figure 4. Repetitive induction responses in individual rods.(A) Schematic diagram of the Dex treatment paradigm. (B) Fluorescence (top) and merged with DIC (bottom) images of a live rod that received three Dex treatments. Labels I, II and III indicate fluorescence responses corresponding to the different inductions. Scale bar is 5 μm. (C) Relative fluorescence intensity profile of the rod in (B). For reference, the position of IS/OS junction was set as 0 μm. The maximum intensity (Peak) and minimum intensity (trough) between two induction responses are indicated. F0 indicates the pre-induction background expression level. (D) Average normalized fluorescence intensity distribution of rods that received repetitive induction. Data were pooled from 112 inductions of 44 rods whose profiles were extracted from confocal images of 4 tadpoles ranging from St. 52-56. The fluorescence distribution for each rod was aligned at the position where fluorescence in the rising phase is 50% of maximum (designated as 0 μm, dotted line). The average relative fluorescence intensity for all responses is plotted (black line). The average lines of for induction I (red), II (green) and III (blue) are shown. Error bars represent 95% confidence. (E) Average peak and trough Rho-mCherry concentrations derived from the fluorescence intensity for the three different inductions are shown. The 'Ave' is the average concentration of all inductions. The 'Max' is the maximum response in each rod. Error bars represent standard deviation (n = 61, 66, 45, 172, 68 respectively).

Image published in: Zhuo X et al. (2013)

Image reproduced on Xenbase with permission of the publisher and the copyright holder. This image is reproduced with permission of the journal and the copyright holder. This is an open-access article distributed under the terms of the Creative Commons Attribution license

Larger Image
Printer Friendly View

Return to previous page