Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-IMG-135571

Xenbase Image ID: 135571


Figure 3. PKCδ antisense morpholino also blocked gastrulation movements. (A) Morpholino oligonucleotides (MOs) for PKCδ1 and PKCδ2 inhibited the translation of mRNA that had the corresponding sequences. RNA encoding GFP-tagged PKCδ and unrelated GFP were coinjected with or without each MO. PKCδ1 (left panel) and PKCδ2 MO (right panel) blocked the production of each GFP-tagged PKCδ, but unrelated GFP was not affected. (B) Control MO or PKCδ MO (20 ng each) was injected into four-cell embryos (panels a,b, respectively). The PKCδ MO caused a gastrulation-defective phenotype that was indistinguishable from that of PKCδδC-injected embryos. This phenotype was rescued by 1 ng of full-length PKCδ1 RNA (panel c). (C) In situ hybridization of early gastrula embryos probed with chordin (chd), goosecoid (gsc), and Xbra. The left and middle panels show 20 ng of control or PKCδ MO was injected into all four blastomeres of four-cell embryos. (Right) To trace the cell lineage, mRNA encoding β-gal with a nuclear localization signal was coinjected with PKCδ MO into two dorsal blastomeres of four-cell embryos. (D) PKCδ MO inhibited the elongation of dorsal marginal zone explants. Twenty nanograms of MO were injected into the two dorsal blastomeres of four-cell embryos.

Image published in: Kinoshita N et al. (2003)

Copyright © 2003. Image reproduced on with permission of the Publisher, Cold Spring Harbor Laboratory Press. This is an Open Access article.

Larger Image
Printer Friendly View

Return to previous page