Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-IMG-147670

Xenbase Image ID: 147670


Supplemental Figure S1 (A) In situ hybridization for Ectodermin at stage 12. (B) In situ with Ectodermin sense probe gives no signal. (C) In situ for FGFR1, a ubiquitous mRNA, does not reveal substantial exclusion from vegetal cells. (D) In situ for Sox17α reveals specific staining of vegetal cells, with no background in the animal pole. All the embryos shown in (A-D) were bisected prior to the in situ hybridization procedure, which was carried out under the same conditions for the embryos shown in Figures 1D-1F. (E-H) Magnifications and controls for Ectodermin immunolocalization. (E) anti-Ecto- linker affinity purified antibody recognizes Ectodermin in the nucleus of animal cap cells. Of note, an identical localization of Ectodermin was found using a second affinity purified anti-Ecto antibody directed against a peptide of the linker region (data not shown). (F) The Secondary antibody alone gives no background. (G) anti- Ecto antibody gives no signal in vegetal cells. (H) the nuclear and membrane staining of β-catenin serves as a positive controls for our ability to detect vegetally localized determinants. (I) Ectodermin protein is already enriched in the animal blastomere by the 8-cell stage.

Image published in: Dupont S et al. (2005)

Copyright © 2005. Image reproduced with permission of the Publisher, Elsevier B. V.

Larger Image
Printer Friendly View

Return to previous page