Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-IMG-150414

Xenbase Image ID: 150414

Fig. 1. Experimental strategy for determining the expression of OMIM® orthologues for deafness and vestibular disorder genes in the Xenopus inner ear transcriptome with Illumina-Solexa (RNA-Seq) and Affymetrix microarray methods. A comprehensive list of OMIM® genes for deafness and vestibular genes was manually curated and used to map OMIM® sequences to the Xl-PSIDs on the Affymetrix GeneChip ® X. laevis Genome Array, and to the JGI Xenopus reference genome scaffolds. Xenopus inner ear RNA was used in microarray hybridization reactions with the Affymetrix GeneChip ®. The hybridization data were analyzed to retrieve intensity values from target Xl-PSIDs that had met alignment criteria for OMIM® orthologues for deafness and vestibular disorder genes. The Alpheus® program was implemented to map inner ear RNA-Seq reads to the JGI Xenopus reference genome scaffolds and the RNA-Seq alignment data were analyzed to retrieve target scaffold regions that had met alignment criteria for OMIM® orthologues for deafness and vestibular disorder genes. As part of the analysis, the data were separated into three OMIM® phenotype categories: deafness only; vestibular disorder only; and both deafness and vestibular disorder. When expression criteria were applied to both datasets, RNA-Seq methods detected expression of more OMIM® orthologues for deafness and vestibular disorder genes in the Xenopus inner ear (241) than were detected by microarray methods (126)

Image published in: Ramírez-Gordillo D et al. (2015)

© Ramírez-Gordillo et al. This image is reproduced with permission of the journal and the copyright holder. This is an open-access article distributed under the terms of the Creative Commons Attribution license

Larger Image
Printer Friendly View

Return to previous page