Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-IMG-153648

Xenbase Image ID: 153648


Fig. 9. Genomic structure and expression profiles of tbx6 and tbx6r. (A) Schematic representation of genomic organization around the tbx6 and tbx6r genes. Syntenic genes of tbx6 and tbx6r are fragmented in scaffolds in the X. tropicalis genome. Unfortunately, tbx6 was not found in v9 of the X. tropicalis genome, although it was found in v4.1. Transposon sequences in scaffolds suggested that scaffold_22 is from the L chromosome and scaffold_29 is from the S chromosome. The sequence of tbx6.S is partial, possibly because 5′ exons were covered with gaps (Ns) in the genome. tbx6rp.S means that tbx6r.S became a pseudogene. In addition to tbx6r.S, nudt9.S seems to have been deleted from the X. laevis genome. (B) Sequences of exon4 for tbx6r.L and tbx6r.S with translated amino acid sequences. A mutation to insert a stop codon was found in tbx6r.S, as indicated with bold letters and an underline, resulting in a pseudogene. (C) Expression profiles of tbx6 and tbx6r were similar to those previously reported ( Callery et al., 2010), in which tbx6 is analyzed as one gene without distinguishing tbx6.L and tbx6.S and relative expression levels were analyzed with quantitative RT-PCR. Data are shown in graphs similar to those in Fig. 1 with additional data of tbx6r shown in green. See text for detailed explanations of the variable expression profiles. (D) RT-qPCR using outbred animals. Bars represent means±s.d. of expression levels of tbx6.L relative to tbx6.S at indicated stages. **, P<0.01, ***, P<0.001 (t-test, two-tailed).

Image published in: Watanabe M et al. (2017)

Copyright © 2017. Image reproduced with permission of the Publisher, Elsevier B. V.

Larger Image
Printer Friendly View

Return to previous page