Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-IMG-157469

Xenbase Image ID: 157469


Fig 6. Chromatin loops connect MCC regulatory elements (A) The relative enrichment over expected of histone modifications or transcription factor binding sites at loop anchor points was calculated and visualized in Cytoscape. “Wild-type” tissue is unmanipulated progenitors containing a mixture of outer cells, ionocytes, and multiciliated cells. Expected overlap was determined by hypergeometric distribution; 3D interactions were obtained from wild-type progenitors, and line thickness is inversely proportional to p value (range: 1e-37 to 1e-611, thicker line is lower p value). Nodes are as labeled; “F3” represents the subset of Foxj1 ChIPseq peaks that are reduced 3-fold or greater in Rfx2 knockdowns and “MCC” represents MCC TSS’s. (B) 3D interactions were obtained for wild-type progenitors using progenitors injected with Multicilin to increase numbers of MCCs as background (to determine interactions stronger in wild-type tissue) and 3D interactions were also obtained using the reverse (to determine interactions stronger in multiciliated cells). Relative enrichments of histone modifications or transcription factor binding sites were determined for each as in (A) and then compared to one another. Thus, values here depicted by color represent changes in enrichment between the two conditions. (C,D) Model of recruitment of Foxj1-bound enhancers to MCC promoters via Rfx2 dimerization. (E) Model of how Rfx2-mediated enhancer recruitment operates in the context of TAD boundaries.

Image published in: Quigley IK and Kintner C (2017)

© 2017 Quigley, Kintner. This image is reproduced with permission of the journal and the copyright holder. This is an open-access article distributed under the terms of the Creative Commons Attribution license

Larger Image
Printer Friendly View

Return to previous page