Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-IMG-170375

Xenbase Image ID: 170375

Fig 5. Relationship between spatial heterogeneity in cell density and MCE.(A) A schematic diagram of the calculation for regional dependence in cell density. The whole tissue was divided into three regions, and for each region the temporal averages in cell density, cell size variance, and cell elimination rate were calculated. (B) The relationships between the temporal averages in cell density and cell size variance (left), between the temporal averages in cell size variance and cell elimination rate (middle), and between the temporal averages in cell density and T1-frequency (right). When the growth rate is not high (e.g., for the reference value), all three values were nearly the same for all three regions. In contrast, in cases with a higher growth rate, those values were strongly dependent on region. More central regions have higher density, which inhibits smooth cell rearrangement (i.e. cell density and T1-frequency were negatively correlated) and thus leads to an increase in cell size variance and elimination. Cell density and size variance had a clear positive correlation, as did size variance and elimination rate. (C) A schematic diagram of the calculation for change in cell size variance around the elimination point before and after its occurrence. (D) Cell size variance clearly decreased due to MCE, demonstrating that recovery in the homogeneity of cell density (i.e., density homeostasis) is one possible role for MCE.

Image published in: Lee SW and Morishita Y (2017)

© 2017 Lee, Morishita. This image is reproduced with permission of the journal and the copyright holder. This is an open-access article distributed under the terms of the Creative Commons Attribution license

Larger Image
Printer Friendly View

Return to previous page