Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-IMG-49173

Xenbase Image ID: 49173

Fig. 5. Dominant-negative DNxKir6.1-pore against the KATP channel changes tight junction properties of early cleavage stage Xenopus embryos. A tight junction and membrane impermeable biotin that labels surface proteins allowed probing of tight junction integrity in Xenopus embryos (Merzdorf et al., 1998). A) Incubation of embryos in Ca2+ and Mg2+-free media caused breaking of tight junctions and extensive labeling of inner membranes. B) Control embryos injected with Venus-GFP mRNA showed faint staining of inner membranes, but not more than one cell layer deep (red arrowhead and inset). C) Embryos injected with DNxKir6.1-pore showed extensive staining of inner membranes, often several cell layers deep (red arrowheads and inset). D) In total, 3/16 embryos (19%) injected with control GFP mRNA exhibited staining of membranes one cell layer or more deep, and 8/15 (53%) of embryos injected with DNxKir6.1-pore mRNA exhibited staining of membranes one cell layer or more deep.

Image published in: Aw S et al. (2010)

Copyright © 2010. Image reproduced with permission of the Publisher, Elsevier B. V.

Larger Image
Printer Friendly View

Return to previous page