Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-IMG-77974

Xenbase Image ID: 77974


Fig. 5. A lower rate of lateral plate mesoderm proliferation in FoxF1 knockdown embryos. (A-D) Cell proliferation as visualized by BrdU incorporation (brown nuclear staining). Transverse sections through the midtrunk of stage-20 embryos injected with CoMo (A) or FoxF1Mo (B) show drastically reduced cell proliferation in the lateral plate mesoderm of FoxF1 knockdown embryos. The boxed areas are magnified in (C,D). (C) Higher magnification of the boxed areas in (A), showing BrdU-positive cells in the lateral plate mesoderm and in the neuroectoderm (inset) of a CoMo-injected embryo. (D) Higher magnification of the boxed areas in (B), showing a lack of BrdU-positive cells in the lateral plate mesoderm but a normal number of BrdU-positive cells in the neuroectoderm (inset) of a FoxF1Mo-injected embryo. (E) A column chart showing the numbers of BrdU-positive nuclei in the lateral plate mesoderm and neuroectoderm of CoMo- and FoxF1Mo-injected embryos at midtrunk level (averages±s.e.m.). Nuclei were counted on 10 sections derived from 5 control embryos and 20 sections from 11 FoxF1 knockdown embryos in two independent experiments. The difference in proliferation rate between control and knockdown lateral plate mesoderm is statistically significant (P=5.9 × 10-6 in a two-tailed t-test). LPM: lateral plate mesoderm. (F,G) TUNEL assay on stage-28 embryos injected with CoMo (F) and FoxF1Mo (G). Apoptotic cells (blue staining, inset) are mostly located in the neuroectoderm. No significant differences were observed between embryos injected with CoMo and FoxF1Mo.

Image published in: Tseng HT et al. (2004)

Copyright © 2004. Image reproduced with permission of the publisher and the copyright holder. This is an Open Access article distributed under the terms of the Creative Commons Attribution License.

Larger Image
Printer Friendly View

Return to previous page