Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-IMG-82785

Xenbase Image ID: 82785

Figure 5. Inhibition of the BMP or Notch Signaling Pathways Prevents Tail RegenerationNontransgenic (A and D) and transgenic F0 tadpoles (B and C) shown 7 days after removal of the posterior 50% of the tail at stage 50/52. (A)�(C) are viewed with both fluorescent and low incident light such that the GFP in the lens can be detected, indicating the presence of the transgene. The tadpoles received a heat shock 3�4 hr before amputation and subsequent daily heat shocks.(A) A wild-type (WT) tadpole can regenerate a complete tail in 7 days. White arrowheads indicate the level of amputation.(B) Transgenic tadpole carrying the HSP70-Noggin-γCrys-GFP construct. Tail regeneration was completely blocked.(C) Transgenic tadpole carrying the HSP70-tBr-γCrys-GFP construct. Tail regeneration was completely blocked.(D) Stage 49 WT tadpole cultured in 10 μM MG132 immediately after removal of the posterior half of the tail, for 7 days. Tail regeneration was completely blocked.(E�H) Regeneration phenotype is linked to inheritance of the transgene in F1 animals derived from crossing a male individual carrying the HSP70-Noggin-γCrys-GFP to a wild-type female. Following heat shocks and amputation, transgenic animals failed to regenerate their tails (E) and Msx1 (blue staining) was not expressed in the stump (F). WT siblings regenerated normally (G), and expressed Msx1 in the blastema (H). Black arrowheads in (G) and a black line in (H) mark the level of amputation.

Image published in: Beck CW et al. (2003)

Copyright © 2003. Image reproduced with permission of the Publisher, Elsevier B. V.

Larger Image
Printer Friendly View

Return to previous page